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Preface to the Second Edition

The 14 or so years that have elapsed since the writing of Applied Geophysics
have seen many changes as results of better instrumentation, the extensive applica-
tion of computer techniques, and more complete understanding of the factors that
influence mineral accumulations. Changes have not been uniform within the various
areas of applied geophysics, however. In gravity field work there have been few
changes except for the use of helicopters and inertial navigation, but the ability to
calculate the gravity field of a complicated model, use the differences from the
measured field to modify the model, and iterate the calculations has significantly
changed gravity interpretation. The greatly improved sensitivities of proton-preces-
sion and optically pumped magnetometers and the use of gradiometers have
considerably increased the number of meaningful magnetic anomalies extractable
from magnetic data: iterative interpretation has also had a significant impact, as in
gravity interpretation. No major individual innovations have affected seismic explo-
ration but a combination of minor improvements has produced probably the
greatest improvement in seismic data quality in any comparable period of time. The
improved data quality has resulted in new types of interpretation, such as seismic
stratigraphy; now, interactive capabilities promise major interpretational advances.
Whereas there has been little change in self-potential methods. magnetotellurics has
blossomed from a research tool to a practical exploration method. Resistivity
methods have changed only a little, but perhaps the greatest changes in any area
result from the development of a number of new electromagnetic exploration
methods. Induced polarization has benefited from greatly improved instrumental
capabilities and interpretation concepts. The application of airborne radiometrics
has broadened and now includes shallow mapping and mineral surveys. The biggest
changes in well logging have resulted from combining measurements from several
types of logs to extract new types of information.

We have tried to deal with these changes. Of course much of the basic theory
remains, but we have tried to make it clearer. Some topics whose relevance to
exploration today has diminished have been considerably shortened or deleted and
others have been expanded or introduced to cover recent developments or changes.

The senior author (WMT) again has taken primary responsibility for Chap-
ters 5 to 10, and 12, LPG and RES for Chapter 4, and RES for Chapter 11, whereas
all contributed considerably to Chapters 2 and 3. The responsibility for the overall
editing again fell to LPG.

I
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PUSTRR. T

Excerpts from

Preface to the First Edition

This book began as a revision of the classic text, Eve and Keys — Applied
Geophysics in the Search for Minerals. However, it soon became obvious that the
great advances in exploration geophysics during the last two decades have so altered
not only the field equipment and practise but also the interpretation techniques that
revision was impractical and that a completely new textbook was required.

Readers of textbooks in applied geophysics will often have a background
which is strong either in physics or geology but not in both. This book has been
written with this in mind so that the physicist may find to his annoyance a detailed
explanation of simple physical concepts (for example, energy density) and step-by-
step mathematical derivations; on the other hand the geologist may be amused by
the over-simplified geological examples and the detailed descriptions of elementary
concepts.

The textbook by Eve and Keys was unique in that it furnished a selection of

problems for use in the classroom. This feature has been retained in the present
book.

December 1974 W. M. Telford R. E. Sheriff
L. P. Geldart D. A. Keys

xvii



Mathematical Conventions

A. General functions

f(x, y.2)
/.

f(0)* g(1)
G(v), G(w)
¢fg(7)
J(x)

I.(x)

K, (x)

function of continuous variables (x, y, z)

function of the discrete variable 1 = nA, n integral
convolution of f(r) with g(r)

Fourier transform of g(¢)

correlation of f(1) with g(r) for a displacement 7
Bessel function of the first kind of order n
Modified Bessel function of the first kind

. Modified Bessel function of the second kind

B. Special functions

u(t)
8(1). 8,

boxcar (¢)
comb (¢)
sinc (r)

unit step function; u(¢) =0, 1 < 0; u(t)= +1,t>0
unit impulse (Dirac delta), §(r) =8,= +1, t=0; =0

fort+0
boxcar(t) = +1, —wy < w < +w, = 0 outside this range

infinite series of equally spaced unit impulses

(sint)/t

C. Mathematical conventions

>, <
s 2
<« >
>
A
A'B
AXB
v
vz
V¢
vV A
v XA
K4
J/T
M—l
x|

det(a,;)

greater than, less than

greater than or equal to, less than or equal to

much greater than, much smaller than

of the order of

approximately equal to

correspondence between a function and its transform
vector of magnitude A

scalar (dot) and vector (cross) products of vectors A and B

del, the vector operator i d/dx + jd/dy + k 3/d:
Laplacian 3%/3x* + 8%/3y? + 32/3z*

gradient of ¢(x, y. z) = grad ¢ (see Eq. (A.17))
divergence of A(x, y, z) = divA (see Eq. (A.19))
curl of A(x. y, z) = curl A (see Eq. (A.20))

matrix with elements a,;

transpose of &/ with elements a

inverse of &/

absolute value of x

determinan: with elements a,,
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Geophysics, as its name indicates, has to do with the
physics of the earth and its surrounding atmosphere.
Gilbert's discovery that the earth behaves as a great
and rather irregular magnet and Newton’s theory of
gravitation may be said to constitute the beginning
of geophysics. Mining and the search for metals date
from the earliest times, but the scientific record
began with the publication in 1556 of the famous
treatise De re metallica by Georgius Agricola, which
for many years was the authoritative work on min-
ing. The initial step in applying geophysics to the
search for minerals probably was taken in 1843,
when Von Wrede pointed out that the magnetic
theodolite, used by Lamont to measure variations in
the earth’s magnetic field, might also be employed to
discover bodies of magnetic ore. However, this idea
was not acted on until the publication in 1879 of
Professor Robert Thalén’s book On the Examination
of Iron Ore Deposits by Magnetic Methods. The
Thalén-Tiberg magnetometer manufacture in Swe-
den, and later the Thomson—Thalén instrument, fur-
nished the means of locating the strike, dip, and
depth below surface of magnetic dikes.

The continued expansion in the demand for met-
als of all kinds and the enormous increase in the use
of petroleum products since the turn of the century
have led to the development of many geophysical
techniques of ever-increasing sensitivity for the de-
tection and mapping of unseen deposits and struc-
tures. Advances have been especially rapid since
World War II because of major improvements in
instrumentation and the widespread application of
the digital computer in the processing and interpre-
tation of geophysical data.

Because the great majority of mineral deposits are
beneath the surface, their detection depends on those
characteristics that differentiate them from the sur-
rounding media. Methods based on variations in the
elastic properties of rocks have been developed for
determining structures associated with oil and gas,
such as faults, anticlines, and synclines several kilo-
meters below the surface. The variation in electrical
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conductivity and natural currents in the earth, rates
of decay of artificial potential differences introduced
into the ground, local changes in gravity, magnetism,
and radioactivity - all these provide information
about the nature of the structures below the surface,
thus permitting geophysicists to determine the most
favorable places to search for the mineral deposits
they seek.

Several of the devices used by geophysicists were
derived from methods used for locating gun em-
placements, submarines, and aircraft during the two
world wars. Attempts were made to locate artillery
batteries during World War I by measuring the
arrival times of the elastic waves generated in the
carth by their recoil; this led directly to the refrac-
tion method of seismic prospecting. Submarines were
located by transmitting sonar pulses underwater and
measuring the interval between the emission and the
return of reflected pulses: knowing the velocity of
sound in seawater, one can calculate the distance to
the reflecting object. Sonar is now used widely for
navigation in marine geophysical surveys. Radar,
developed during World War I1, utilized radio pulses
in a similar manner to track aircraft and ships.
Ships, submarines, and mines were also detected in
both wars by their magnetic properties.

It should be pointed out that geophysics tech-
niques can detect only a discontinuity, that is, where
one region differs sufliciently from another in some
property. This, however, is a universal limitation, for
we cannot perceive that which is homogeneous in
nature: we can discern only that which has some
variation in time and/or space.

Geophysics deals with all aspects of the physics
of the earth. its atmosphere, and space. Geophysical
measurements were made by the men who landed on
the moon, and the atmospheres, magnetic fields, and
other properties of planets are studied using geo-
physical data obtained by unmanned spacecraft.

The principal subdivisions of geophysics are as
follows; some of these have been investigated for
many years simply because of their scientific
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Table 1.1. Total 1987 worldwide expenditures by survey type and objective (in thousands of U.S. dollars).

Transition Drill
Type Land zone Marine Airborne hole Total
Petroleum
Exploration 809,394 10,091 541,053 13,405 1,504 1,375,447
Development 20,161 25 9,657 32 294 30,169
Minerals 13,076 62 13,705 58 26,901
Environmental 443 92 9 626
Engineering 2,100 8,580 235 10914
Geothermal 1,09 30 1.125
Groundwater 1,505 283 1,788
Oceanography 1,458 300 1,758
Research 3217 6,190 802 184 10.393
Total 850,990 10,116 556,999 28,336 2,679 1,459,120
interest: Radioactivity
Well logging
Seismology Miscellaneous chemical, thermal, and other

Thermal properties of the earth

Terrestrial magnetism

Telluric currents

Geodesy and gravitation

Radioactivity of the earth, sea, and atmosphere;
cosmic rays

‘Atmospheric electricity

Meteorology

Our knowledge of the Earth has been developed
by combining information from all these ficlds. This
holds also for investigations in applied geophysics as
well; combining several different approaches may
help us to determine more accurately the location of
a structure or deposit. Purely scientific investigation
of such subjects as the rate of evaporation of water
from lakes, the chemical compositions of different
rocks and waters from streams and ponds, the mea-
surement of natural earth currents, potential varia-
tions, and impurities in the atmosphere - all these
influence methods of locating deposits that the ap-
plicd geophysicist seeks. For example, the concentra-
tions of radon in the air or streams may give indica-
tions of deposits of uranium. Electromagnetic waves
caused by distant thunderstorms are used to locate
conducting ores at great depths below the surface.

Applied geophysics in the search for minerals, oil.
and gas may be divided into the following methods
of exploration:

Gravitational
Magnetic
Seismic
Electrical
Electromagnetic

methods

Certain geological conditions gencrally are associ-
ated with metallic ores, others with gas and oil. Ore
deposits usually are found in areas where extensive
igneous activity occurred, after which the rocks may
or may not have been metamorphosed. Ultimately
the area was eroded sufficiently to bring the deposits
close enough to the surface to be discovered and
exploited. Coal is the result of the rapid burial of
vegetation that existed near a sea or large lake, and
gas and oil usually are due to the deposition and
subsequent burial of marine organisms. The search
for metallic ores generally is concentrated in arcas of
known igneous and metamorphic rocks, such as the
Rocky Mountains, the Andes, the Alps, and the
Urals. However, important exceptions occur because
(1) minerals can be transported away from the place
of original formation, perhaps by mechanical trans-
port, as in the case of alluvial gold, perhaps in
solution, and (2) some minerals such as salt and
gypsum are deposited originally from aqueous solu-
tion and hence occur in sedimentary areas. The
search for coal, oil, and gas is confined to sedimen-
tary basins, except for rare instances in which oil or
gas has migrated into fractured igneous or mctamor-
phic rocks.

The choice of techniques to locate a certain min-
eral depends on the nature of the mineral and of the
surrounding rocks. Sometimes a method may give a
direct indication of the presence of the mineral being
sought, for example, the magnetic method when used
to find magnetic ores of iron or nickel; at other times
the method may indicate only whether or not condi-
tions are favorable to the occurrence of the mineral
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(From Senti, 1988.)

sought. For example, the magnetic method is used in
petroleum exploration as a reconnaissance tool to
determine the depth to the basement rocks and thus
determine where the sediments are thick enough to
warrant exploration.

Surveys using aircraft carrying magnetic, electro-
magnetic. and other devices are the most rapid meth-
ods of finding geophysical anomalies. Such areal
surveys are also the most inexpensive for covering
large arcas and hence are frequently used for recon-
naissance: anomalies of interest are later investigated
using more dctailed ground techniques. Scismic ex-
ploration is another method that has been used to
explore large areas. both on land and oftshore. though
at considerably greater cost. in both time and money.

Table 1.1 shows world expenditures for acquisi-
tion of geophysical data during the year 1987. The
total expenditure of about $1.5 billion (U.S.)! does
not include work in the Soviet Union, Eastern Eu-
rope. or China. This figure is only 30% of the 1982
figure and is below those of all the years since 1977
(Fig. 1.1), reflecting the low prices for petroleum and
minerals. There seems to be a rather widespread

feeling that the sharp declinc seen in Figure 1.1 has
leveled out, although statistical data are not yet
available to support this. Many (including the
authors) expect a gradual increase in activity over
the next several years.

Figure 1.1 also shows major shifts in the locales
of geophysical work. The proportions of the different
geophysical methods and unit costs are shown in
Table 1.2. Cost figures are sensitive to many factors
such as the supply and demand of particular com-
modities, economic conditions, governmental regula-
tions, technological advances, and exploration phi-
losophy, as well as operational environment. length
and nature of surveys, and other factors.

Tables 1.1 and 1.2 are based on the latest annual
survey carried out by the Society of Exploration
Geophysicists (Senti, 1988); this survey depends on
voluntary reporting by a multitude of organizations.
who do not necessarily report on the same bases nor
in the same units. Neverthcless, the perturbations

1 All figures in this book are U.S. dollars.




Table 1.2. Geophysical expenditures and unit costs, 1987.

Cost basis Unit costs g
Petroleum exploration %
Land seismic (2-D. P wave)  721% $207 X 10°/mo  $2,206 /knt ,1
Transition zone seismic 04 198 1930” s
Marine seismic 205 479 28%° R
Seismic processing 280 £
Seismic refraction 06 91 51 ;
Land S wave 03 170
Land 3-D 28 $7,589/km?
Marine 3-D 23 380
VSP 0.2
Land gravity 0.2 12 61/stn
Marine gravity <01 20 46/km
Magnetotellurics <0.1 30 1.548/s1n
Airborne magnetics 1.0 11,/km "
Other airborne 0.1 &
Other 0.1 .
Seismic sources i
Land Dynamite 41.6% (line-kilometers)
Air gun 1.4 :
Weight drop 1.5
Vibroseis 50.4
§ wave 03
Marine Air gun 96.9%
Sparker 01
Expenditures Unit costs
Airborne work
Gravity $283 x 10° $48,/km
Magnetics 16,575 9
Mag. + Time-domain EM 1,660 24
Frequency-domain EM 5.759 45
VLF EM 1,608 20
Radiometric MM 19
Land mining
Seismic reflection $3,875 $1.606/km
Seismic refraction 77 2,810
Gravity 1,298 $24/stn
Magnetics 1,070 1 149
Resistivity 267 10 132
SP 401 310
Time-domain EM 4917 1,169
Frequency-domain EM 250 136
VLF EM 71 165
Mag. + time-domain EM 133 362
Mag. + frequency-domain EM 801 197
Mag. + VLF EM 224 351
Time-domain IP 1,645 564
Frequency-domain IP 197 862
Complex resistivity IP 25
Magnetotelluric
natural field 7 51
Magnetotellurics
controlled source 353 120
Gamma ray 6 30
Drill hole 58
Gravity-magnetic
surveys by objective
Petroleum 61.9%
Mineral exploration 24.6
Environmental 04
Engineering 09
Geothermal 04
Groundwater 06
Oceanographic 11
Research 99

“gxcluding processing.



Reference

because the data arc not homogeneous are probably
small.

Comparing 1987 data with that for previous years
shows an important change in seismic petroleum
work: a shift from exploration, the finding of hydro-
carbons, to reservoir studies, detailing oil/gas finds
with the objectives of exploiting the finds more eco-
nomically and increasing the oil/gas recoverable
from the finds.

Applied geophysics is a relatively new science and
the design of instruments, field techniques, and inter-
pretation of the data are undergoing rapid develop-

5

ment. The following chapters will provide the reader
with a survey of the different methods currently
employed to acquire and interpret geophysical data
as an aid in the exploration for minerals and
petroleum and in the planning of large construction
projects.
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Gravity Methods

2.1. INTRODUCTION

2.1.1. General

Gravity prospecting involves measurements of varia-
tions in the gravitational field of the earth. One
hopes to locate local masses of greater or lesser
density than the surrounding formations and learn
something about them from the irregularities in the
earth’s ficld. It is not possible, however, to determine
a unique source for an observed anomaly. Observa-
tions normally are made at the earth’s surface, but
underground surveys also are carried out occasion-
ally.

Gravity prospecting is used as a reconnaissance
tool in oil exploration; although expensive, it is still
considerably cheaper than seismic prospecting.
Gravity data are also used to provide constraints in
seismic interpretation. In mineral exploration, grav-
ity prospecting usually has been employed as a sec-
ondary method, although it is used for detailed fol-
low-up of magnetic and electromagnetic anomalics
during integrated base-metal surveys. Gravity sur-
veys are sometimes used in engineering (Arzi, 1975)
and archaeological studies.

Like magnetics, radioactivity, and some electrical
techniques, gravity is a natural-source method. Local
variations in the densities of rocks ncar the surface
cause minute changes in the gravity field. Gravity
and magnetics techniques often are grouped together
as the potential methods, but there are basic differ-
ences between them. Gravity is an inherent property
of mass, whereas thc magnetic statc of matter de-
pends on other factors, such as the inducing fields
and/or the orientations of magnetic domains. Den-
sity variations are rclatively small, and the gravity
effects of local masses are very small compared with
the effect of the background field of the Earth as a
whole (often of the order of 1 part in 10 to 107),
whereas magnetic anomalies often are large relative
to the main field. The time variation of the magnetic
field is complex, whereas the gravity field is constant
(ignoring “earth tides”). Corrections to gravity read-

A BTN

ings are more complicated and more important than
in magnetic or other geophysical methods. Gravity
field operations are more expensive than magnetic
operations, and field work is slower ‘and requires
more highly skilled personnel.

"
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2.1.2. History of Gravity Exploration

Galileo Galilei, in about 1589, so legend tells us,
dropped light and heavy weights from the Leaning
Tower of Pisa in an attempt to determine how weight
affects the speed at which a given object falls. Jo-
hann Kepler worked out the laws of planctary mo-
tion, and this enabled Sir Isaac Newton to discover
the universal law of gravitation (Mathematical Prin-
ciples of Natural Philosophy. 1685-87).

The expeditions of the French Academy of Sci-
ences to Lapland and Peru (Ecuador) in 1735-45
gave Picrre Bouguer the opportunity to establish
many of the basic gravitational relationships, includ-
ing variations of gravity with elevation and latitude,
the horizontal attraction due to mountains, and the
density of the Earth.

Captain Henry Kater, in 1817, introduced the &
compound pendulum, with interchangeable centers
of oscillation and suspension, which became the
major tool for gravity investigation for over a cen-
tury. Because the variations in gravitational attrac-
tion are so small, Baron Roland von Ebtvos set out
to measure derivatives rather than total magnitudes.
He completed his first torsion balance (a modifica-
tion of the Coulomb balance) in 1890 and made the
first gravity survey on the ice of Lake Balaton in
1901. F. A. Vening Meinesz, in 1923, measured grav- #
ity with pendulums on board a Dutch submarine
and demonstrated gravity variations over various
arcas of the oceans, especially the large gravity cf-
fects near the Indonesian trench.

In December 1922, a torsion-balance survey of
the Spindletop oil ficld initiated geophysical explo-
ration for oil. In late 1924, a test well on the Nash
salt dome in Brazoria County, Texas, verificd the
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Principles of gravity

gravity interpretation, becoming the first geophysical
hydrocarbon discovery, although the first producing
oil well did not come in until January 1926.

The last half of the 1920s saw extensive gravity
surveys with the torsion balance. In 1929 the portable
pendulum began to be used, followed in 1932 by the
stable gravimeter (and the unstable gravimeter, which
was not publicly described until 1937). By 1940,
gravimeters had become so stable and convenient
that torsion balances and portable pendulums disap-
peared from use. LaCoste (1934) described the zero-
length spring, but the first workable LaCoste
gravimeter did not appear until 1939. In subsequent
years, gravimeters have been adapted (LaFehr, 1980)
to measurements under water, on moving ships and
aircraft, and in boreholes.

The major addition to our knowledge of gravity
in recent years has come from observations of satel-
lite paths (Kahn, 1983). These have considerably
increased our knowledge of the detailed shape of the
Earth, but this has not changed gravity exploration
significantly.

In the 1940s, graphic and grid methods of isolat-
ing anomalies were developed, and the anomalies
that result from simple shapes were calculated. The
computing power made available by digital comput-
ers since the 1960s has considerably increased our
interpretation capabilities, the ultimate goal being
solution of the inverse problem (§2.7.9).

2.2. PRINCIPLES OF GRAVITY

2.2.1. Newton'’s Law of Gravitation

The force of gravitation is expressed by Newton's
law: The force between two particles of masses my
and m, is directly proportional to the product of the
masses and inversely proportional to the square of
the distance between the centers of mass:

F = y( mym,/r? )y, (2.1)
where F is the force on m,, 1 1S a unit vector
directed from m, toward my, r is the distance
between m, and m,, and v is the universal gravita-
tional constant. Note that the force F is always
attractive. In SI units the value of y is 6.672 x 10~ !!
N 07 /kg? or in cgs units 6.672 x 10~8 dyne co? /g2,

2.2.2. Acceleration of Gravity

The acceleration of my due to the presence of m,
can be found by dividing F by m, in Equation (2.1),
that is,

g= ('yml/rz)r1 (2.2a)

7

The acceleration g is equal to the gravitational force
per unit mass due to my. If m, is the mass of the
Earth, M, g becornes the acceleration of gravity and
is given by

g = (YM/R2)x, (2.2b)

R, being the radius of the Earth and r, extending
downward toward the center of the Earth. (It is
customary to use the same symbol g whether it is due
to the Earth or a mass m.) The acceleration of
gravity was first measured by Galileo in his famous
experiment at Pisa. The numerical value of g at the
Earth’s surface is about 980 cm/s?. In honor of
Galileo, the unit of acceleration of gravity, 1 cm/s2,
is called the galileo or Gal.

Gravimeters used in ficld measurements have a
sensitivity of about 107% Gal or 0.01 mGal, although
the reading accuracy is generally only 0.03 to 0.06
mGal. As a result, they arc capable of distinguishing
changes in the value of g with a precision of one
part in 10%. Microgravimeters are available with
measuring accuracy of about 5 pGal.

2.2.3. Gravitational Potential

(a) Newtonian or three-dimensional potential.
Gravitational fields are conservative; that is, the
work done in moving a mass in a gravitational field
is independent of the path traversed and depends
only on the end points (§A.3.4). If the mass is
cventually returned to its original position, the net
energy cxpenditure is zero, regardless of the path
followed. Another way of expressing this is to say
that the sum of kinetic (motion) energy and potential
(position) energy is constant within a closed system.

The gravitational force is a vector whose direction
is along the line joining the centers of the two
masses. The force giving rise to a conservative field
may be derived from a scalar potential function
U(x,y, z), called the Newtonian or three-dimensional
potential, by finding the gradient [Egs. (A.17). (A.30),
and (A31)]:

~F(x.,y. z)/my

—g(x, ). 2)

vU(x, y,z2)

(2.3a)
In spherical coordinates (Fig. A.4b) this becomes

vU(r,0,¢)

It

—F(r.0,¢)/m,

—g(r.0.9) (2.3b)

Alternatively, we can solve this equation for the




P(0,0.0)

Figure 2.1. Potential of three-dimensional mass.

gravitational potential in the form [Eq. (A.16)]
U(r.0.4) = ['(vu) - dr
[=]
- ——‘frg-dr (2.4)

which is a statement of the work done in moving a
unit mass from infinity (that is, a very distant point),
by any path, to a point distant r from the point mass
producing the gravitational field. Using Equation
(2.2a) in scalar form, we get

u(ry = —yf;m(l/rz) dr = ym/r (2.5)

It is often simpler to solve gravity problems by
calculating the scalar potential U rather than the
vector g and then to obtain g from Equation (2.3). -
Considering a three-dimensional mass of arbi-
trary shape as in Figure 2.1, the potential and accel-
eration of gravity at a point outside the mass can be
found by dividing the mass into small elements and
integrating to get the total effect. From Equation
(2.5), the potential due to an element of mass dm at
the point (x, y, z) a distance r from P(0,0,0) is

dU = ydm/r = ypdxdydz/r

where p(x, y. z) is the density, and r? = x? + y* +
2. Then the potential of the total mass n1 is

U= y};j;j;(p/r) dx dy dz (2.62)

Becausc g is the acceleration of gravity in the z
direction (positive vertically downward), and assum-
ing p constant,

g = —(3U/dz)

=vpfxfyfz( /) dedydz  (2.7a)

Gravity methods

Sometimes it is more convenient to use cylindrical
coordinates (Figure Ada). Because dxdy dz =
1o dry 40 dz and r? = 1} + 2, 1 = x* + y?, the po-
tential becomes

U= r) dr, df dz 2.6b

wf [ (o/r) dn (2.60)
and the acceleration in the z direction is

= rz/r) dry d dz 2.7b

g=1p f, ) j; fz (ro2/r*) dry (2.7v)

In spherical coordinates,
dxdydz = r* sin8 drdf d¢

hence,
U= ypffofr sinfdrddde  (2.60)
r’6v¢

Taking the z axis along the polar axis,

I

—9U/9z
—ypj;j;j;'(z/r)sianrdodcp

g

I

_Ypfj;j;sin()cosﬂdrdﬁ d¢ (2.7¢)

because z/r = cos 8. (The minus sign indicates that
g is directed toward the mass dm at the center of the
sphere.)

(b) Logarithmic or two-dimensional potential. 1f
the mass is very long in the y direction and has a

* uniform cross section of arbitrary shape in the xz

plane, the gravity attraction derives from a logarith-
mic (rather than Newtonian) potential. Then Equa-
tion (2.6a) becomes

U= prj;dxdzfjow(l/r) dy

With some manipulation (sec problem 1), the Ioga-
rithmic potential becomes

U= 2'ypj;j;1n(1/r') dx dz (2.8)

where 2 = x2 + z2. The gravity effect for the two-

dimensional body is

g=-0U/dz =2yffp(z/r’2) dxdz (2.9)
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2.2.4. Potential-Field Equations

The divergence theorem [Gauss’s theorem; Eq.
(A.27)] states that the integral of the divergence of a
vector field g over a region of space V is equivalent
to the integral of the outward normal component of
the ficld g over the surface enclosing the region. We
have

/VV rgdv = /sg,, ds (2.10)

If there is no attracting matter within the volume,
the integrals are zero and v * g = 0. But from Equa-
tion (2.3a) the gravitational force is the gradient of
the scalar potential U, so that

“Vg=v-vU=vWU=0 (211a)

that is, the potential in free space satisfies Laplace’s
equation. In cartesian coordinates, Laplace’s equa-
tion is

U U W

VNU=—F5+—-—+— =0 (211
dx? ay? az2 (2.116)

[sec Eq. (A.37) for Laplace’s equation in spherical
coordinates]. Also, because g = — dU/dz, and any
derivative of a solution of a differential cquation is
also a solution, we have
vi=0 (2.11¢)
If, on the other hand. there is a particle of mass
at the center of a sphere of radius r, then

fsg"ds = —(ym/r?)(4nr?)

= —4aym (2.12a)
the minus mecaning that g, is opposite to n, the
outward-drawn normal. It can be shown (see prob-
lem 2) that this result holds regardless of the shape
of the surface and the position and size of the mass
within the surface. If the surface encloses several
masses of total mass M. we can write

V-gdo= [g ds= - 1
fy g dv Lg,, s dmyM (2.12b)

If the volume V is very small, enclosing only a point,
we can remove the integral sign to give
v -g=—dny (2.13a)

where p is the density at the point. Then, from

Equation (2.3a),

VU =47y (2.13b)
which is Poisson’s equation.

Equations (2.11a) and (2.13b) state that the grav-
ity potential satisfies Laplace’s equation in free space
and Poisson’s equation in a region containing mass.

These equations imply that various distributions
of mass can produce the same potential field over a
surface (Skeels, 1947); this is sometimes called the
“inhercnt ambiguity” of gravity interpretation.
Sometimes it is convenient to substitute for masses
distributed throughout a volume V a fictitious sur-
face density of mass over a surface S enclosing V
such that the effect outside S is the same. From
Equations (2.12b) and (2.13a) we have ‘

f(—4vrw) dv = fg,. ds (214)
14 s

that is, the component of gravity perpendicular to
the surface gives the equivalent surface density. For
an equipotential surface, this is merely the total
gravitational field.

2.2.5. Derivatives of the Potential

Quantitites useful in gravity analysis may be ob-
tained by differentiating the potential in various
ways. We have already noted in Equation (2.7a) that
vertical gravity g = ~3U/dz. This is the quantity
measured by gravimeters.

The first vertical derivative of g [from Eq. (2.7a)]
is

3g/9z = —32U/9z7*
=-U,

wf [ [(1/r =322/r%) axdyar (2.15)
xyYz

where subscripts indicate derivatives of U. Measure-
ments occasionally are made of the vertical gradient
(Falkiewicz, 1976; Jordan, 1978: Ager and Lilard,
1982; Butler, 1984).

The second vertical derivative is

3%g/92* = - 3%U /823
= _Uz:z
=3 523/r7 — 32/r%) dxdydz
w fx fy fz (52°/ /r%) dxd
(2.16)
This derivative frequently is employed in gravity

interpretation for isolating anomalies (§2.6.5) and
for upward and downward continuation (§2.6.7).
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Derivatives tend to magnify near-surface features by
increasing the power of the linear dimension in the
denominator. That is, because the gravity effect varies
inversely as the distance squared, the first and sec-
ond derivatives vary as the inverse of the third and
fourth powers, respectively (for three-dimensional
bodies).

By taking the derivatives of g in Equation (2.7a)
along the x and y axes, we obtain the components
of the horizontal gradient of gravity:

~dg/dx
3'ypfff(xz/r5) dxdydz (2.17)
x'y’z

U. =

and similarly for the y component U,,. The horizon-
tal gradient can be determined from gravity profiles
or map contours as the slope or rate of change of g
with horizontal displacement. The horizontal gradi-
ent is useful in defining the edges and depths of
bodies (Stanley, 1977).

The differential curvature (or horizontal directive
tendency, HDT) is a measure of the warped or
curved shape of the potential surface. From Equa-
tion (2.6a),

U, = ypfff(3x2/r5 —1/r) dxdydz (2.18)
x’y’z

Other components are U,, and U,,. The differential
curvature (HDT) is given by

172
HDT = {(U,, - U)" + (24,)’}

= 3yp£j;£[(x2 +y?)/r*) dxdydz (2.19)

It is not possible to measure U,, U,,. U,,, or HDT
directly. Differential curvature can be obtained from

torsion-balance measurements.

2.3. GRAVITY OF THE EARTH

2.3.1. Figure of the Earth

(a) General. Gravity prospecting evolved from the
study of the Earth’s gravitational ficld, a subject of
interest to geodesists for determining the shape of
the Earth. Because the Earth is not a perfect homo-
geneous sphere, gravitational acceleration is not con-
stant over the Earth’s surface.

The magnitude of gravity depends on five factors:
latitude, elevation, topography of the surrounding
terrain, earth tides, and density variations in the
subsurface. Gravity exploration is concerned with

Gravity methods

anomalies due to the last factor, and these anomalies
generally are much smaller than the changes due to
lattitude and elevation, although larger than the
anomalies due to tidal and (usually) topographic
effects. The change in gravity from equatorial to
polar regions amounts to about 5 Gal, or 0.5% of the
average value of g (980 Gal), and the effect of
elevation can be as large as 0.1 Gal, or 0.01% of g. A
gravity anomaly considered large in oil exploration,
on the other hand, would be 10 mGal, or 0.001% of
8. whereas in mineral exploration a large anomaly
would be 1 mGal. Thus, variations in g that are
significant in prospecting are small in comparison
with the magnitude of g and also in comparison with
latitude and elevation effects. Fortunately, we can,
with good accuracy, remove most of the effects of
factors that are not of interest in prospecting.

(b) The reference spheroid. The shape of the
Earth, determined by geodetic measurements and
satellite tracking, is nearly spheroidal, bulging at the
equator and flattened at the poles. The polar flatten-
ing is (Req — R,)/R.q = 1/298.25, where R,y and
R, are the Earth’s equatorial and polar radii, respec-
tively.

The reference spheroid is an oblate ellipsoid that
approximatcs the mean sea-level surface (geoid),
with the land above it removed. In 1930 the Interna-
tional Union of Geodesy and Geophysics adopted a
formula (Nettleton, 1976, p. 17) for the theoretical
value of gravity g,, but this has been superseded
(Woolard, 1979) by the Geodetic Reference System
1967 (GRS67):

g = 978,031.846(1 + 0.005,278.,895 sin® ¢
+0.000,023 462 sin* ¢ ) mGal (2.20)

where ¢ is latitude.

(c) The geoid. Mean continental elevations are
about 500 m, and maximum land elevations and
ocean depressions are of the order of 9.000 m re-
ferred to sea level. Sea level is influenced by these
variations and other lateral density changes. We
define mean sea level (the equipotential for the
Earth’s gravity plus centrifugal effects), called the
geoid, as the average sea level over the oceans and
over the surface of sea water that would lie in canals
if they were cut through the land masses.

The simplified figure of the Earth allows for in-
creasing density with depth, but not for lateral varia-
tions, which are the objects of gravity exploration.
Because of the lateral variations, the geoid and refer-
ence spheroid do not coincide. Local mass anomalies
warp the geoid as in Figure 2.2a. We might expect
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Figure 2.2. Comparison of reference spheroid and geoid. (a) Warping of the geoid by a

local mass. (b) Large-scale warping.

the geoid to be warped upward under the continents
because of attracting material above, and downward
over the ocean basins because of the low density of
water (Figure 2.2b). However, deviations from the
spheroid do not correlate with the continents nor
with the lithospheric plates, suggesting that density
differences exist below the lithosphere. The devia-
tions between the two surfaces (Kahn, 1983) are as
much as 100 m.

23.2. Gravity Reduction

(a) General. Gravity readings are generally influ-
enced by the five factors listed in Section 2.3.1a.
hence we must make corrections to reduce gravity
readings to the values they would have on a datum
equipotential surface such as the geoid (or a surface
everywhere paraliel to it).

{b) Latitude correction. Both the rotation of the
Earth and its equatorial bulge produce an increase of
gravity with latitude. The centrifugal acceleration
due to the rotating Earth is maximum at the equator
and zero at the poles; it opposes the gravitational
acceleration, while the polar flattening increases
gravity at the poles by making the geoid closer to the
Earth’s center of mass. The latter effect is counter-
acted partly by the increased attracting mass at the
equator. A latitude correction. Ag, is obtained by

L

differentiating Equation (2.20):

Ag /As = (1/R,)Ag,/A¢
= 0.811sin2¢ mGal/km (2.21a)

= 1.305sin2¢ mGal/mile (2.21b)

where As = N-S horizontal distance = R_A¢ and
R, is the radius of the Earth (= 6368 km). The
correction is a maximum at latitude 45° where it
amounts to 0.01 mGal/(13 m) and it is zero at the
equator and poles. The correction is added to g as
we move toward the equator.

(c) Free-air correction. Since gravity varies in-
versely with the square of distance, it is necessary to
correct for changes in elevation between stations to
reduce field readings to a datum surface. The Jree air
correction does not take account of the material
between the station and the datum plane. It is ob-
tained by differentiating the scalar equation equiva-
lent to Equation (2.2b); the result is (dropping the
minus sign)

Agpa/AR =2yM,/R3 = 2g/R,
= 03086 mGal/m  (2.22a)

§
|
= 0.09406 mGal/ft  (2.22b) j
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Figure 2.3. Bouguer correction. (a) Station on a broad
plateau. (b) Underground stations.

at 45° latitude. The free-air correction is added to
the field reading when the station is above the datum
plane and subtracted when below it.

To make latitude and free-air corrections, station
position must be known precisely. For an accuracy
of 0.01 mGal, the usual accuracy of the gravimeter,
N-S location (at 45° latitude) must be known to
within 13 m (40 ft) and elevation to 3 ¢cm (1 in.).

(d) Bouguer correction. The Bouguer correction
accounts for the attraction of matcrial between the
station and datum plane that was ignored in the
free-air calculation. If the station were centrally lo-
cated on a plateau of large horizontal extent and
uniform thickness and density (Fig. 2.3a), the gravity
reading would be increased by the attraction of this
slab between the station and the datum. The Bouguer
correction is given by

Agp/AR =2myp

= 0.04192p mGal/m (2.23a)

= 0012780 mGal/ft  (2.23b)

where p is the slab density in grams per cubic
centimeter [see Eq. (2.57)]. If we assume an average
density for crustal rocks of 2.67 g/cm’, the numeri-
cal value is

Ags/AR = 0112 mGal/m  (2.24a)

= 0.0341 mGal/ft  (2.24b)

Gravity methods

The Bouguer correction is applied in the opposite
sense to free air, that is, it is subtracted when the
station is above the datum and 'vice versa.

When gravity measurements are made at under-
ground stations, as in Figure 2.3b, the slab between
stations at depths z; and z, exerts an attraction
downward on station 1 and upward on 2. Thus the
difference in gravity between them is 47yp(z; — 2)
mGal, that is, the Bouguer correction is doubled.

The Bouguer and free-air corrections are often
combined into an elevation correction. From Equa-
tions (2.22) and (2.23) the result is

Agg/AR = Agpa/AR - Bgs/AR
= (0.3086 — 0.04190) mGal/m (2.25a)

= (0.0941 — 0.0128p) mGal/ft (2.25b)

The elevation correction is applied in the same way
as the free-air correction.

Two assumptions were made in deriving the
Bouguer correction: (1) The slab is of uniform den-
sity and (2) it is of infinite horizontal extent; neither
is really valid. To modify the first, one needs consid-
erable knowledge of local rock types and densities.
The second is taken care of in the next reduction.

(e) Terrain correction. The terrain correction al-
lows for surface irregularitics in the vicinity of the
station. Hills above the elevation of the gravity sta-
tion exert an upward pull on the gravimeter, whereas
valleys (lack of material) below it fail to pull down-
ward on it. Thus both types of topographic undula-
tions affect gravity measurements in the same sensc
and the terrain correction is added to the station
reading.

There are several methods for calculating terrain
corrections, all of which require detailed knowledge
of relief near the station and a good topographical
map (contour interval ~ 10 m or 50 ft or smaller)
extending considerably beyond the survey area. The
usual procedure is to divide the area into compart-
ments and compare the clevation within each com-
partment with the station elevation. This can be
done by outlining the compartments on a transpar-
ent sheet overlying a topographic map. The most
common template used concentric circles and radial
lines. making sectors whose areas increased with
distance from the station. The gravity effect of a
single sector was calculated from the following for-
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(b)

Figure 2.4. Use of terrain chart with topographic map. (a) Terrain chart overlying map.

(b) Enlarged view of a single zone.

mula [Eq. (2.58)]:
Sgr(r.0) = ypﬂ{(rn -r)+ (,‘2 + Azz)l/z
-(r2+422)"%} (226)

where 6 is the sector angle (radians), Az = |z, ~ z,|,
z, is the station elevation, z, is the average elevation
in the sector, and s, and r; are the outer and inner
sector radii. The terrain correction Ag, is the sum of
the contributions of all sectors:

Agr = Z;Sgr(r,()) (227)

The use of a terrain chart of this type is illus-
trated in Figure 2.4. The transparent template is
placed over the topographic map with the center of
the circles at the gravity station. The average eleva-
tion within a single compartment is estimated from
the contours within it and subtracted from the known
station elevation. The difference is Az in Equation
(2.26). from which the contribution to A gr is calcu-
lated for the compartment. Tables of terrain correc-
tions such as Table 2.1 facilitated this operation.
[Hammer (1982) gives corrections for subdivisions of
the inner zones required in microgravity surveys for
engineering and archacological surveys.] Note that
there was no provision for relief within 2 m of the
station, that is, it has to be flat for a 2 m distance
from the station. It can be scen from Table 2.1 that
the correction is small if r > 20z, ~ being the aver-
age distance from the compartment to the station.

Other methods for segmenting the topographic
map occasionally were applied: for instance, when
contours were practically linear, there was no advan-
tage in using circular sectors. An alternative scheme

L.

used elementary areas so proportioned that the grav-
ity effect of each was the same regardless of distance.

Terrain corrections for outer zones are often made
on a computer using elevations on a regular grid
(Krohn, 1976). Regardless of the approach, the topo-
graphic reduction is a slow and tedious task. Fur-
thermore, in areas of steep and erratic slopes, it
usually is not very accurate, particularly for relief in
the vicinity of the station itself. At the edge of a
steep cliff or gorge, the terrain correction is almost
inevitably in error. A better solution is to move the
gravity station away from sharp relief features if this
18 possible.

Bouguer anomalies (§2.3.2h) for marine surface
and airborne surveys require a different terrain cor-
rection from that discussed earlier. The Bouguer
correction is calculated (for marine data) as if the
water depth were everywhere constant, and hence it
is discontinuous over abrupt elevation changes. The
terrain correction is made discontinuous to compen-
sate for the Bouguer correction discontinuities. To
the left of a two-dimensional vertical step in the sea
floor (Fig. 2.5), the terrain correction is positive due
to the deeper water on the right (analogous to a
nearby valley in land work), and it is negative to the
right of the step.

(f) Earth-tide correction. Instruments for measur-
ing gravity are sensitive enough to record the changes
in g caused by movement of the Sun and Moon,
changes that depend on latitude and time. Their
range is about 0.3 mGal. Figure 2.6 shows calculated
and measured tidal variations for a stationary
gravimeter,

The correction can be calculated from knowledge
of the locations of the Sun and Moon. However,
because the variation is smooth and relatively slow,
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Figure 2.5. Marine terrain correction for vertical sea-floor
step. p, = 1.03, pock = 2.67, t = meters. (After Nettleton,
1971.)

usually it is included in the instrument drift correc-
tion (§2.5.2).

(g) Isostatic correction. The worldwide average of
Bouguer anomalies on land near sca level is approxi-
mately zero. In regions of large elevation they are
generally negative, while in oceanic regions mainly
positive. These large-scale effects are due to density
variations in the crust, indicating denser material
beneath the ocean and less dense material in regions
of elevated land.

In 1855, two hypotheses were put forward to
account for the density variations. Airy proposed a
crust of uniform density but variable thickness float-
ing on a liquid substratum of higher density, whereas
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Pratt suggested a crust where the density varies with
topography, being lower in mountain regions and
higher beneath the oceans. Both hypotheses appear
to be true to some extent. An isostatic correction
occasionally is necessary in large-scale surveys to
compensate for crustal variations.

(h) Bouguer and free-air anomalies. When all of
the preceding corrections have been applied to the
obscrved gravity reading, we obtain the value of the
Bouguer anomaly gy for the station:

89 = 8obs — & + (Ag, + Agp, — Agy + Agyr)
(2.28)

where g .. is the station reading, g, is the theoretical
gravity, Ag, is the latitude correction, Agg, is the
free-air correction, Ag, is the Bouguer correction,
and Ag, is the terrain correction. The correction
terms in Equation (2.28) correspond to a station
south of the reference latitude (in the northern hemi-
sphere) and above the datum. Sometimes, rather
than the value from Equation (2.20), some particular
station value in the survey area is used for g,. Note
that the signs of Agp, and Agy change when the
station is below the datum plane.

Another quantity that is sometimes used (espe-
cially with marine data) is the free-air anomaly, the
value of gz when Agy (and often Agy) is omitted
from Equation (2.28).

If the Earth had no lateral variations in density,
after corrections for the preceding effects, gravity
readings would be identical. The Bouguer and free-air
anomalies result from lateral variations in density
(see also Ervin, 1977).

2.3.3. Densities of Rocks and Minerals

The quantity to be determined in gravity exploration
is local lateral variation in density. Generally density
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Table 2.2. Densities.

Gravity methods

Range Average Range Average
Rock type (g/cn) (g/cm3) Mineral (g/cm’) (g/cm?)
Sediments (wet) Metallic minerals
Overburden 192 Oxides, carbonates
Soil 1.2-24 1,92 Bauxite 2.3-255 2.45
Clay 163-26 2.21 Limonite 35-40 378
Gravel 1.7-24 20 Siderite 37-39 383
Sand 1.7-23 20 Rutile 4.18-4.3 4.25
Sandstone 1.61-276 235 Manganite 42-44 432
Shale 1.77-3.2 2.40 Chromite 43-46 4.36
Limestone 1.93-290 2.55 limenite 43-50 4.67
Dolomite 2.28-29 2.70 Pyrolusite 47-50 482
Sedimentary rocks (av.) 250 Magnetite 49-52 512
Igneous rocks Franklinite 50-522 5.12
Rhyolite 235-270 252 Hematite 49-53 5.18
Andesite 24-28 2.61 Cuprite 5.7-6.15 5.92
Granite 250~ 281 2.64 Cassiterite 6.8-7.1 6.92
Granodiorite 267-279 273 Wolframite 71-75 7.32
Porphyry 2.60-289 274 Sulfides, arsenides
Quartz diorite 262-29% 2.79 Sphalerite 35-40 375
Diorite 272-29 2.85 Malachite 39-403 40
Lavas 2.80-3.00 290 Chalcopyrite 41-43 4.2
Diabase 250-3.20 291 Stannite 43-452 4.4
Basalt 2.70-3.30 299 Stibnite 45-46 46
Gabbro 270-~3.50 3.03 Pyrrhotite 45-48 465
Peridotite 278-13.37 3.15 Molybdenite 44-48 47
Acid igneous 230-3M 2.61 Marcasite 4.7-49 4.85
Basic igneous 200-317 279 Pyrite 49-5.2 5.0
Metamorphic rocks Bornite 49-54 51
Quartzite 25-270 2.60 Chalcocite 55-58 5.65
Schists 239-29 264 Cobaltite 58-6.3 6.1
Graywacke 26-27 2.65 Arsenopyrite 5.9-6.2 6.1
Marble 26-29 2.75 Bismuththinite 65-6.7 6.57
Serpentine 2.4-3.10 278 Galena 74-76 75
Slate 27-29 2.79 Cinnabar 80-8.2 8.1
Gneiss 259-30 2.80 Non-metallic minerals
Amphibolite 2.90-3.04 29 Peiroleum 06-09 —
Eclogite 3.2-354 337 ice 0.88-0.92 —
Metamorphic 24-31 274 Sea Water 1.01-1.05 —
Lignite 11-1.25 1.19
Soft coal 1.2-15 132
Anthracite 134-18 1.50
Chalk 1.53-26 2.01
Graphite 1.9-23 215
Rock salt 21-26 2.22
Cypsum 22-26 235
Kaolinite 22-263 253
Orthoclase 25-26 —
Quartz 25-27 2,65
Calcite 26-27 —
Anhydrite 2.29-30 293
Biotite 27-32 292
Magnesite 29-312 303
Fluorite 3.01-3.25 314
Barite 43-47 4.47

is not measured in situ, although it can be measured
by borehole logging tools (sce §11.8.3). Density can
also be estimated from seismic velocity (§4.2.8a).
Often density measurements are made in the labora-
tory on small outcrop or drill-core samples. How-
ever, laboratory results rarely give the true bulk

density becausc the samples may be weathered, frag-
mented, dehydrated, or altered in the process of
being obtained. Consequently, density is often not
very well known in specific field situations.

Density data are given in Table 2.2. Sedimentary
rocks are usually less dense than igneous and meta-
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morphic rocks. The wide range of density of sedi-
mentary rocks is primarily due to variations in
porosity. The nature of the pore fluids also affects
the bulk density. Sedimentary rock density is also
influenced by age, previous history, and depth of
burial. Obviously a porous rock will be compacted
when buried. In general, density increases with depth

L

(Fig. 2.7) and time. The density contrast between
adjacent sedimentary formations in the ficld is sel-
dom greater than 0.25 g/cm’® (except for the near-
surface; §2.7.11).

Although igneous rocks generally are denser than
sedimentary rocks, there is considerable overlap.
" Volcanics, particularly lavas, may have high porosi-

e
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ties and, hence, low density. Generally, basic igneous
rocks are heavier than acidic ones. Porosity, which
affects the density of sediments so greatly, is of
minor significance in most igneous and metamorphic
rocks unless they are highly fractured.

Density usually increases with the degree of meta-
morphism because the process tends to fill pore
spaces and recrystallize the rock in a denser form.
Thus metamorphosed sediments, such as marble,
slate, and quartzite, generally are denser than the
original limestone, shale, and sandstone. The same is
true for the metamorphic forms of igneous rocks,
gneiss versus granite, amphibolite versus basalt, and
SO on.

With few exceptions, nonmetallic minerals have
lower densitics than the average for rocks (2.67
g/cn?). Metallic minerals, on the other hand, mainly
are heavier than this average, but since they rarely
occur in pure form in large volumes, their effect
normally is not great.

2.3.4. Density Estimates from Field Results

(a) Density from underground measurements.
Sometimes it is feasible to make gravity measure-
ments underground. If readings are taken at points
directly below onc another (for example, at the sur-
face and in an underground opening), then the dif-
ference between these values is given by [see Egs.
(2.22) and (2.23)]

Ag = (0.3086 — 0.0838p) Az + ey mGal

Ag = (0.0941 — 0.0256p) Az’ + e mGal

where Az is the elevation difference in meters, Az’ in
feet, p is in grams per cubic centimeter, and & is the
difference in terrain corrections (due to air-filled
mine tunnels) in milligals. (Note that the Bouguer
correction has been doubled; see §2.3.2d.) Hence the
average bulk density in the intervening rock is

p=13.68—1193(Ag — er)/Az g/cn? (2.29a)
or

p=3.68 — 39.06(Ag — e7)/Az’ g/’ (2.29b)

Because ¢, depends upon p, Equations (2.29) are
usually solved by successive approximations.

Gravity methods

Hussain, Walach, and Weber (1981) discuss under-
ground surveys.

(b) Density from borehole gravimeter measure-
ments. Borehole gravimeters (§11.9.1) are able to
make gravity measurements to an accuracy of about
5 nGal (Schmoker, 1978; LaFehr, 1983). Terrain
corrections are not necessary in borehole measure-
ments. Differentiating Equations (2.29) keeping Az
and Az’ fixed gives

Ap = 0.0119A(Ag/Az) g/co?  (2.30a)
Ap = 0.0301A(Ag/Az') g/en®  (2.30b)

where Ag is in microgals. With meter accuracy of
45 uGal, the error in A(Ag) can be as large as +10
pGal, and measuring density to +0.01 g/cn? re-
quires readings 12 m (40 [t) or more apart.

The volume contributing most to borehole gravity
measurements is the portion closest to the borehole.
Half of the effect is produced by rocks within a
radius of 0.7Az, 80% from 2.45Az (the radius of
investigation) and 90% from within 5Az. Borehole
gravity measurements (LaFehr, 1983) permit deter-
mination of the density sufficiently far from the
borchole so that invasion and alteration by the
drilling process are unimportant, in contrast to the
few inches of effective penetration achicved by other
density logging tools. The main objective of borehole
gravity measurements usually is to determine poros-
ity, which is directly related to density.

(c) Nettleton’s method. A reasonably satisfactory
method of cstimating near-surtace density uses a
gravity profile over topography that is not corrclat-
able with density variations (Netticton, 1976). For
example, a profile across an erosional valley that is
not structure-controlled would probably be suitable,
but a profile across a structure-controlled ridge might
be suspect because density changes associated with
the structure may correlate with elevation. Field
readings are reduced to Bouguer gravity profiles as-
suming different values of p for the Bouguer and
terrain corrections. The profile that reflects the to-
pography the least is the one with the best estimate
of the density. The method is illustrated in Figure
2.8; incorrect density assumptions result in profiles
either following or inverting the topography. Obvi-
ously the density involved is that between the eleva-
tions of the highest and lowest stations.

(d) Parasnis’ method. An analytical approach
somewhat similar to Nettleton’s graphical method
has been developed by Parasnis (1962, p. 40). Re-
arranging Equation (2.28) and using Equation (2.25),
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we obtain

(8ovs — & + Ag +03086z) - gy
= (0.0419z — Agy/p)p

(gobs — &+ AgL + 009412') — 8p
= (0.01282' — Ag,/p)p

(2.31a)

(2.31b)
where z is in meters and 2’ is in feet. We wish to
determine the average bulk density for the data set
by considering the Bouguer anomaly gp to be a
random error of mean value zero. If we plot

(8obs — & + Ag;, + 0.30862)

versus (0.0419z — Ag,/p) (or the equivalent in terms

L

of z’), the slope of the best-fit straight line through
the origin will be p.

2.4. GRAVITY INSTRUMENTS

24.1. General

The absolute measurcment of gravity is usually car-
ried out at a fixed installation by the accurate timing
of a swinging pendulum or.of a falling weight.

Relative gravity measurements may be made in
various ways. Three types of instruments have been
used: the torsion balance, the pendulum and the
gravimeter (or gravity meter). The latter is the sole
instrument now used for prospecting, the others hav-
ing only historical interest.
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2.4.2. Absolute Measurement of Gravity

Although the timing of a freely falling body was the
first method of measuring g, the accuracy was poor
because of the difficulty in measuring small time
intervals. The method has been revived as a result of
instrumentation improvements and elaborate free-fall
installations are now located at several national lab-
oratories. It is necessary to measure time to about
1078 5 and distance to < j pm to obtain an accu-
racy of 1 mGal with a fall of 1 or 2 m.

Until recently, the standard method for measur-
ing g employed a modified form of the reversible
Kater pendulum. The value of g was obtained by
timing a large number of oscillations.

2.4.3. Relative Measurement of Gravity

(a) Portable pendulum. The pendulum has been
used for both geodetic and prospecting purposes.
Since g varies inversely as the square of the period
T, we have

T?g = constant

Differentiating, we get

Ag= —2gAT/T

- -2%(h-T)/T ()
Thus if we can measure the periods at two stations to
about 1 ps, the gravity difference is accurate to 1
m@Gal. This is not difficult with precise clocks such as
quartz crystal, cesium, or rubidium.

The pendulum has been used extensively for
geodetic work, both on land and at sea (in sub-
marines). Portable pendulums used in oil exploration
during the early 1930s had a sensitivity of about
0.25 mGal. Pendulum apparatus was complex and
bulky. Two pendulums, swinging in opposite phase,
were used to reduce sway of the mounting; they were
enclosed in an evacuated, thermostatically controlled
chamber to eliminate pressure and tempcrature ef-
fects. To get the required accuracy, readings took

about } hr.

(b) Torsion balance. A fairly complete account of
the salient features of the torsion balance can be
found in Nettleton (1976). Figure 2.9 is a schematic
of the torsion balance. Two equal masses m are
separated both horizontally and vertically by rigid
bars, the assembly being supported by a torsion fiber
with an attached mirror to measure rotation by the
deflection of a light beam. Two completec beam as-
semblies were used to reduce the effects of support
sway. Readings were taken at three azimuth posi-

Gravity methods

Figure 2.9. Torsion balance (schematic).

tions of the beam assemblics, normally 120° apart,
to get sufficient data to calculate the required results.
Elaborate precautions were required to minimize ex-
traneous effects such as temperature and air convec-
tion. Each station had to be occupied for approxi-
mately one hour so that daily production was only 8
to 10 stations.

The deflection of the torsion balance beam is due
to horizontal and vertical changes in the gravity field
resulting from curvature of the equipotential sur-
faces. Torsion-balance measurements permitted cal-
culation of U,,, U, U,. and |U, — Ul The
plotted values are usually the horizonial gradien:
[the vector (Ui + U,j)] and the differential cur-
vature [a vector with magnitude given by Equation
(2.19) and direction relative to the x axis of
(/2tan" 12U, /\U,, — U,,D). Measurements were
usually in Edtvos units (EU) equal to 1076
mGal/cm.

(c) Stable-type gravimeters. The first gravimeters
dating from the early 1930s were of the stable typc
but these have now been superceded by more sensi-
tive unstable meters. Nettleton (1976) describes a
number of different gravimeters. All gravimeters are
essentially extremely sensitive mechanical balances
in which a mass is supported by a spring. Small
changes in gravity move the weight against the
restoring force of the spring.

The basic elements of a stable gravimcter are
shown in Figure 2.10. Whereas the displacement of
the spring is small, Hooke's law applies, that is, the
change in force is proportional to the change in
length; hence,

AF=M8g=1k8s or 8g=k8s/M (2.33)
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Figure 2.10. Basic principle of the stable gravimeter.

where k is the spring constant in dynes per centime-
ter. To measure g to 0.1 mGal, we must detect a
fractional change in spring length of 1,/107 (because
Mg = ks, 8g/g = 8s/s), hence the need for consid-
erable magnification. Mechanically we can make
k/M small by using a large mass and a weak spring,
but this method of enhancing sensitivity is limited.
The period of oscillation of this system is

T =2n(M/k)'?
Substituting for M in Equation (2.33), we get

8g=4n?8s/T? (2.39)
Thus for good sensitivity, the period is very large
and measurement of 8g requires considerable time.
Stable gravimeters are cxtremely sensitive to other
physical effects. such as changes in pressure, temper-
ature, and small magnectic and seismic variations.

{d) Unstable-type gravimeters. Also known as la-
bilized or astatized gravimeters, these instruments
have an additional negative restoring force operating
against the restoring spring force, that is, in the same
sense as gravity. They essentially are in a state of
unstable equilibrium and this gives them greater
sensitivity than stable meters. Their linear range is
less than for stable gravimeters so they are usually
operated as null instruments.

The Thyssen gravimeter, although now obsolete,
illustrates very clearly the astatic principle (Fig. 2.11).
The addition of the mass m above the pivot raises
the center of gravity and produces the instability
condition. If g increases, the beam tilts to the right
and the moment of m cnhances the rotation; the
converse is true for a decrease in gravity.

At present the Worden and LaCoste-Romberg
meters are the only types used for exploration.

(e) LaCoste— Romberg gravimeter. The LaCoste-
Romberg gravimeter was the first to employ a zero-
length spring, now used by almost all gravimeters

21

Figure 2.11. Basic principle of the unstable (Thyssen)
gravimeter. (After Dobrin, 1960.)

g+o8

figure 2.12. Lacoste— Romberg gravimeter.

(Askania, Frost, Magnolia, and North American). A
zero-length spring is one in which the tension is
proportional to the actual length of the spring, that
is, if all external forces were removed the spring
would collapse to zero length. The advantage of the
zero-length spring is that if it supports the beam and
mass M (sec Fig. 2.12) in the horizontal position, it
will support them in any position (note that cos @ in
Eq. (2.35) cancels out, and g = K(1 — ¢/s), which
always has a solution since g is finite). Zero-length-
springs are built with initial tension so that a thresh-
old force is required before spring extension begins
(as with a door spring).

To derive the expression for the sensitivity of the
LaCoste~Romberg gravimeter, we write k(s — c) for
the tension in the spring when its length is s; thus, ¢
is a small correction for the fact that the spring is
not truly zero length. Taking moments about the
pivot in Figure 2.12, we get

Mgacosb = k(s — ¢)bsina
=k(s—c)b(ycos8)/s (2.35)
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Figure 2.13. Reading a Worden gravimeter.

using the law of sines. Thus
g = (k/M)(b/a)(1 - c¢/s5)y

When g increases by 8g, the spring length increases
by &8s where

8g = (k/M)(b/a)(c/s)(y/5) 8s (2.36)

For a given change in gravity 8g, we can make 8s as
large as we wish by decreasing one or more of the
factors on the right-hand side; moreover, the closer
the spring is to the zero-length spring, the smaller ¢
is and the larger 8s becomes.

In operation this is a null instrument, a second
spring being used, which can be adjusted to restore
the beam to the horizontal position. The sensitivity
of gravimeters in use in surface exploration is gener-
ally 0.01 mGal. The instrument requires a constant-
temperature environment, usually achieved by keep-
ing it at a constant temperature that is higher than
the surroundings.

(f) Worden gravimeter. The Worden gravimeter
(Fig. 2.13) is especially portable and fast to operate.
It uses small, very light weight parts of quartz (for
example, the mass M weighs only 5 mg) with small
inertia so that it is not necessary to clamp the
movement between stations. Sensitivity to tempera-
ture and pressure changes is reduced by enclosing
the system in a vacuum flask. The meter also em-
ploys an automatic temperaturc-compensating ar-
-angement. The Worden meter is small (instrument
cimensions are a few centimeters, the outer case is

about 25 cm high and 12 cm in diameter) and weighs
about 2.5 kg. Iis only power requirement is two
penlight cells for illuminating the scale.

A simplified schematic is shown in Figure 2.14.
The moving system is similar to the LaCoste—
Romberg meter. The arm OP’ and beam OM are
rigidly connected and pivot about O, changing the
length of the main spring P'C, which is fixed at C.
We have the following relations:

ZOCP' = LOP'C=n/2 — (a + 8/2)

RPLCP PPL1OP
SO
ZRPP' =1n/2 — a
s=CP 8s=CP' — CP=bfsin(n/2 - a)
SO

0 = 8s/(bcos a)

The correction factor ¢ that appeared in the treat-
ment of the LaCoste—Romberg meter is negligible
for the Worden meter. Taking moments about the
pivot for the case where § = 0, we get

Mpga = ksb cos a

When g increascs to (g -+ 8g), P moves along the
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Figure 2.14. Basic principle of the Worden gravimeter.

circle to P’ and
M(g+8g)acosd =kb(s+ 8s)cos(a + 6/2)
When 8 = 0, to the first approximation this becomes

M(g+8g)a
= kb(s + 8s){cosa — (8/2)sina}
= kb(s + 8s){cosa — (8s/2b)tan a}
= kb{ scosa — 8s(s/2b)tana + Sscosa}

Subtracting the first moment equation to eliminate
g. we get

Madg = kb{cosa — (s/2b)tana} 8s
Using the relation sin a = 5/2b, we finally get
8g = (k/M)(b/a)(cos2a/cos a)8s (2.37)

As in the LaCoste~Romberg meter, the sensitivity
can be increased by decreasing the factors (k/M)
and (b/a). in addition the factor (cos2a/cos a)
approaches zero when a approaches 45°, thus fur-
nishing another method of obtaining high sensitivity.
In practice the sensitivity is about 0.01 mGal.

Like the LaCoste~Romberg instrument, the
Worden meter is read by measuring the force re-
quired to restore the beam to the horizontal position.

(8) Calibation of gravimeters. Both the Worden
and LaCoste-Romberg meters are null instruments
and changes in gravity are shown as arbitrary scale

L o

divisions on a micrometer dial. There are several
methods for converting these scale readings to grav-
ity units.

Theoretically calibration can be carried out by
tilting because a precise geometrical system is in-
volved, but this is not the usual procedure. Gener-
ally, readings are taken at iwo or more stations
where values of g are alrecady known. If the value of
8g between the stations is large enough to cover a
reasonable fraction of the instrument range, a linear
response is usually assumed between them. However,
one should occupy scveral additional stations if pos-
sible.

2.5. FIELD OPERATIONS

2.5.1. Land Surveys

Gravity exploration is carried out both on land and
at sea. Although some attempts have been made to
devclop an airborne instrument, this mode of opera-
tion is not yet practical (Paterson and Reeves, 1985).

The distinction between reconnaissance and de-
tailed field work is based on the objective, that is,
whether the purpose is to find features of interest or
to map them. Station spacings in field work with the
gravimeter vary from 20 km to as little as 5 m. The
station interval is usually selected on the basis of
assumed depth and size of the anomalies sought. For
oil exploration, one station per 2 to 4 kn? is desir-
able because structures associated with oil accumula-
tion arc usually larger than this and hence their
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anomalies would not be missed with such spacing.
While a more-or-less uniform grid of stations is
desirable, stations are often run on loops that are
operationally easier. Stations 0.5 to 1.0 km apart on
loops roughly 6 X 6 km in size might be typical for a
petroleum survey.

In mineral exploration, gravity is normally em-
ployed as a secondary detail method for confirma-
tion and further analysis of anomalies already out-
lined by magnetic and/or electrical techniques. The
spacing is determined mainly by knowledge gained
from the earlier surveys. Measurements are usually
made at the same locations as the magnetic or elec-
trical stations, commonly 15 to 30 m apart.

Microgravity engineering and archaeological sur-
veys (for example, searching for cavities or bedrock)
sometimes involve station spacing as close as 1 m
(Arzi, 1975).

Field measurements with modern gravimeters are
straightforward. The gravimeter must be leveled pre-
cisely for each reading. It may be difficult to get a
stable null in swampy ground and when the wind is
strong, but extra care and time generally give an
acceptable measurement. Similar problems arise in
marine gravity work using instruments that rest on
the sea floor. For reasonable speed of operation, a
vehicle normally is used for getting from station to
station.

Precision is required in surveying gravity stations.
Achieving the required precision (10 cm in elevation
and about 30 m in latitude for 0.03 mGal accuracy)
often involves the major cost of field work. Gravity
measurements typically proceed much faster than
the surveying, and three or four survey teams may be
required to keep ahead of one meter operator.

Inertial navigation sometimes cuts the cost of
determining location and elevation, especially where
helicopter transport is used in areas of difficult ac-
cess (LaFehr, 1980). An inertial navigation system
(§B.7) senses acceleration by means of three orthogo-
nal accelerometers mounted on a gyroscopically sta-
bilized platform; changes in horizontal and vertical
position are determined by integrating twice over
time. Very small errors tend to accumulate rapidly to
produce large errors, but these can be reduced to
acceptable amounts if the helicopter stops every 3 to
5 min during which time the drift rate can be deter-
mined. This time interval is compatible with the
travel time from station to station. Lynch and King
(1983) claim 0.8 m elevation accuracy and 15 m
horizontal accuracy in a survey in the mountainous
overthrust belt of the Rocky Mountains, to yield
Bouguer values with 0.3 mGal accuracy. In a high-
precision survey of a limited area in northern Canada
checked by leveling, elevations were determined to

Gravity methods

0.9 m and horizontal positioning to 0.43 m, so iner-
tial navigation can achieve remarkable accuracy.
With a helicopter survey, stations can be located on
a more uniform grid than with land surveys (which
are usually run around the perimeter on traverses),
so that interpolation errors are considerably reduced.

2.5.2. Drift Correction

Gravimeters change their null reading valuc gradu-
ally with time. This drifr results mainly from creep in
the springs and is usually unidirectional. Modern
instruments, however, have very little drift. Gravity
readings also change with time becuase of tidal ef-
fects (§2.3.2f).

The net result of drift and tidal effects is that
repeated readings at one station give different values.
Drift correction is accomplished by reoccupying some
stations. The maximum time between repeat read-
ings depends on the accuracy desired, but is usually
3 or 4 hr. A drift curve is shown in Figure 2.15. Its
oscillatory shape is determined by tidal effects. It is
not necessary to use the same station for checking
drift because any station can be reoccupied. Interme-
diate gravity stations occupied only once can then be
corrected for the drift that occurred.

If the meter movement is not clamped between
readings or is subjected to sudden motion or jarring
(as during transport), somewhat erratic changes
(called tears or tares) may be produced. If the in-
strument is bumped, it is wise to reread a known
station immediately. Since therc is no way of allow-
ing for erratic changes, we can only correct those
points occupied while the drift curve is smooth.

2.5.3. Marine Surveys

(a) Locating marine stations. Considerable gravity
work has been donc on the surface of water-covered
areas and also on the sea floor. Locating the station
is usually done by using a radionavigation system
such as Shoran, Raydist, or RPS (see §B.6). The
accuracy of offshore location is usually lower than
on land but elevation determination is not a problem
if appropriate allowance is made for tidal variations.

(b) Remote control systems. Standard gravimeters
have been adapted for operation on the sea floor to
depths of 200 m. This method of measurement is
suitable for most inland waters and coastal areas.
The meter is cnclosed in a pressure housing that is
supported on a squat tripod with disk fect. About
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Figure 2.15. Gravimeter drift during a field survey.

Figure 2.16. Photograph of a shipboard gravimeter.

half the total weight of the assembly is in the tripod
in order to provide maximum stability when it is
resting on the bottom; the overall weight of one
model is 300 kg. The assembly is connected to a ship
by a cable from which it is lowered into position on
the bottom. Leveling is achieved by small motors
that raise or lower the disk fect.

Although the high sensitivity of this equipment is
an advantage, operation in deep water is slow be-
cause the assembly must be raised to the surface
between stations. A problem in reoccupying stations
is that the sea floor focation may be different from
that previously occupied, even when the surface loca-
tion is identical. This method is now little used.

(c) Shipboard operations and the Ebtvds correc-
tion. Shipboard gravimeters (Fig. 2.16) are used for
most gravity measurements at sea. Shipboard
gravimeters arc mounted on an elaborate gyro-stabi-
lized platform (Valliant and LaCoste, 1976) located
in the part of a ship where there is minimum move-
ment due to roll and pitch.

If a gravimeter has a velocity during a measure-
ment, the centrifugal force acting on the meter is
different from that when it is at rest. An castward
component of velocity adds to the velocity owing to
the rotation of the Earth and hence increases the
centrifugal force and decreases the gravity reading.
A westward component of velocity has the opposite




26 Gravity methods

useful for regional studies and reconnaissance of
large anomalies. Brozena (1984) achieved an accu-
racy of 5 mGal averaged over 20 km.

effect. A northward component creates a new com-
ponent of centrifugal force, which is added vectori-
ally to the first. The correction for the velocity of the
meter, Agy. called the EGwais correction, is given by

Ag, = 4.040V cos ¢ sina + 0.0012111? mGal

L -

2.6. GRAVITY DATA PROCESSING

(2.38a)

Ag, = 7.503V" cos ¢ sina + 0.004154/2 mGal

(2.38b)

where V is in kilometers per hour, V' in knots, ¢ is
the latitude, and « is the course direction with

respect to true north. The accuracy of shipboard resulting from density changes (anomalous masses) ¢
gravity depends mainly on the accuracy of the Eotvos  at various depths. Some anomalous masses lie at v
correction. depths in the zone of interest, some result from 2
The error in the E6tvos correction due to errors  deeper masses, and some from shallower ones. As T
in ¥V and « is the source of an anomaly deepens, the anomlay d:
become more spread out and its amplitude de- re
d(Agy) = (0.0705V cos ¢ cos a) da creases. The smoothness (or apparent wavelength) of re
anomalies is generally roughly proportional to the sﬁ
+(4.040 cos ¢ sina + 0.002422V) 4V depth of the lateral density changes. rel
The depth range we wish to emphasize depends
(2.39) on the objectives of the interpretation. Shallow be
anomalies are of interest in mineral exploration but res
with ¥ and dV in kilometers per hour and da in ar¢ usually regarded as undesirable noise in petro- sul
degrees. Thus the sensitivity to velocity error is leum exploration. As in any geophysical technique, in
greatest for an east-west course and the sensitivity the most useful factor in interpretation is knowledge pre
to course-direction error is greatest for a north-south  Of the local geology. o ally
course. Assuming that the velocity at the moment of Wherea's it is possible for a distributed anor.n:'ilous dra
gravity reading involves an uncertainty of 0.2 km/hr ~ mMass to give an anomaly that appears to onginate the
and instantaneous heading error of 1°, ¢ = 40°, and from a more concentrated deep(.:rA mass, a concen- files
¥V =10 km/hr, then d(Ag,) = 0.62 mGal for an trated mass cannot appear to originate deepcr. The ensi
east-west course and 0.54 mGal for a north-south horizontal extent and smoothness of an anomaly is Thi;
course. thercfore usually a measure of the depth of the giot
anomalous mass, and this property can be used to has
partially separate the effects of anomalous masses stati
that lie within a depth zone of interest from the be u
. . effects of both shallower and dceper masses. : ther.
2.5.4. Airborne Gravity The effects of shallow masses l()near-surface noise) r latic
The main difficulty with airborne gravity surveys are usually of short wavelength. They can be re- C
arises from very large and rapid changes in g,, moved largely by filtering out (smoothing) short- ; als a
caused by changes in the aircralt altitude, linear ~wavelength anomalies. The effccts of deep masses are Boug
acceleration, roll, and heading. These effects can be called the regionc/. The gravity field after near- | Grap
corrected for in shipborne gravity work because surface noise and the regional have been removed is ing ¢
changes are slow and the velocity is low. called the residual. it presumably represents effects 1 when
Hammer (1983) tells of using a helicopter flying of the intermediate zone of interest. ! W
(in the middle of the night to avoid air turbulence) at The major problem in gravity interpretation is tional

a speed of 50 to 100 km/hr at elevations of 300 to
4,000 m using an autopilot directed by a navigation-
system computer (2 human pilot is not sufficiently
precise). His data, smoothed ove: a 2 min window (2
to 4 km), suggest that airbornc gravity would be

2.6.1. Noise, Regionals, and Residuals

Because a Bouguer map shows horizontal differences
in the acceleration of gravity, only horizontal changes
in density produce anomalies. Purely vertical changes
in density produce the same effect everywhere and so
no anomalies result.

The gravity field is a superposition of anomalies

separating anomalies of interest from the overlap-
ping cffccts of other features; usually the main
obscuring effects result from deeper features. Residu-
alizing attempts to remove the regional so as to
emphasize the residual. However, the separation usu-

- e el
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ally is not complete; both regional and residual are
distorted by the effects of each other.

Residualizing can also be thought of as predicting
the values expected from deep features and then
subtracting them from observed values, so as to leave
the shallower effects. The expected value of the re-
gional is generally determined by averaging values in
the area surrounding the station. Several methods of
removing the unwanted regional are described in the
pext section. Gupta and Ramani (1982) discuss the
application of different residualizing methods.

2.6.2. Graphical Residualizing

Graphical residualizing is done by smoothing either
profiles or maps. A simple example of removing the
regional by smoothing is illustrated in Figure 2.17.
The profile in Figure 2.17a shows disturbances of
different sizes; the smooth, nearly linear slope is the
regional. In Figure 2.17b, the regional contours are
regular and the residual obtained by subtracting the
smoothed contours from the map values should be
reliable.

The emphasis in drawing a smooth regional should
be on “smooth” and most of the errors or failures in
residualizing are caused by the regional not being
sufficiently smooth. “Smooth” implies both smooth
in shape and systematic in contour interval. Often
profiles are plotted for several parallel lines, gener-
ally in the dip direction. Smooth regionals are then
drawn on these parallel lines. making certain that
they are consistent on all profiles. Often cross pro-
files are drawn linking the parallel lines into a grid to
ensure that the regional is consistent over the grid.
This approach is especially suitable when the re-
gional trend is mainly unidirectional. If the survey
has been carried out with close, uniform spacing of
stations and lines, the station values themselves can
be used instead of contour values to plot the profiles,
thereby reducing errors because of contour interpo-
lation.

Once the regional has been contoured, the residu-
als are obtained by subtracting the regional from the
Bouguer map, either graphically or numerically.
Graphical residualizing is sometimes done by draw-
ing contours of constant difference through the points
where regional and observed contours intersect.

} When the regional is so irregular that the direc-
tional trend is not immediately apparent or when
there are several superimposed regional systems,
residualizing may be done iteratively. that is, one
ﬁ_rsl determines and removes thc most obvious re-
gional and then finds a second-order regional from
the first-order residual, and so on.

L
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Gravily station locations should be shown on the
final map to aid in distinguishing residuals that are
well controlled from those possibly resulting from
interpolation.

The result obtained by smoothing profiles or con-
tours is inevitably biased by the interpreter, but this
is not necessarily bad. If the interpreter is experi-
enced and uses additional geologic knowledge to
guide him, it may be a decided advantage. It should
be noted that nonsmoothing methods of residualiz-
ing also involve subjective elements, such as the
choice of order for surface fitting, of grid dimensions
in grid residualizing, and so on.

2.6.3. Surface-Fitting Residualizing
Methods

The regional is sometimes represented by a low-order
analytic surface. The parameters of the analytic sur-
face are usually determined by a least-squares fit
(Agocs, 1951) or some similar operation. How closely
the surface fits the data depends on the order of the
surface and the magnitude of the area being fitted.
Nettleton (1976) illustrates orders of fit for a one-
dimensional case (Fig. 2.18). The regional surface is
often that given by a polynomial or the low-order
components of a 2D-Fourier surface [Eq. (A.522)].
The selection of order is usually made by examina-
tion of trial fits of several different orders.

Surface fitting is sometimes done to isolate and
emphasize trends. Results from Coons, Woolard,
and Hershey (1967) are shown in Figure 2.19. The
trend becomes more cvident as the order increases
up to some point, about tenth order for the data of
Figure 2.19. The residual for low order still contains
appreciable regional trend and thus low orders are
not very effective in separating the regional from the
residual. Likewise, high-order surfaces are not effec-
tive because much of the sought-after anomaly is
mixed with the regional in the surface fit.

2.6.4. Empirical Gridding Methods

Gridding provides a simple way of predicting the
regional by rcgarding it as the average value of
gravity in the vicinity of the station (Griffin, 1949).
Usually the values averaged are those on the circum-
ference of a circle centered at the station:

20r) = (1/27;)[02”g(r.0) d6  (2.40)
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Figure 2.17. Graphical residualizing (After Sheriff, 1978). (a) Removing the regional on a
profile across a local uplift and a fault.
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Figure 2.18. Illustrating least-squares surface-fitting. Curve G represents a gravity profile
and curves 1,4, 8,16 represent fits of the respective orders. The surface fit, and hence
the residual. depends on the dimensions that are fitted (from Nettleton, 1976).
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Figure 2.19. Fits of surfaces of different order and the respective residuals. (After

Coons, Woolard, and Hershey, 1967.)

In actual practice the integral is generally replaced
by a sum of discrete values (as in Fig. 2.20a):

g(r) = {g(r.0) +g(r.0) + - +g(r.8,.1)}) /n
(2.41)

where 8,, = m(2#/n). The residual is then

g =8~ 8(7) (2.42)
where gg is the Bouguer anomaly value. Usually the
values of g(r, 8,,) are obtained by interpolation from
the gravity map contours. The result depends some-
what on the number of points sclected but even more
on the radius of the circle. If the radius is so small

that part of the anomaly is included on the circle,
then the anomaly magnitude will be too small; if the
radius is too large, the average may be biased by
other anomalies. The radius is usually of the same
order of magnitude as the depth of the anomaly to
be emphasized, but both shallower and deeper
anomalies will still contribute to the results. The grid
spacing for points to be calculated is generally about
half the radius used for averaging.

Sometimes averages over several circles of differ-
ent radii r, are used; successive circles are assigned
different weights, w;:

8 = (c/sz){go"'wlg—(;lj"' Wzm"' }
(2.43)

T

-

L

wher¢
Lw, =
are r¢
(2.43)
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Figure 2.20. Analytical separation of the residual and the regional. (a) Griffin method.
(b} Second-derivative method.

+H--- Analytical regional
— — — — Graphical regional
Observed gravity

iz

Graphical residual

' Halo Anomaly
circle, Halo
- if the \ —— P
sed by N Analytical residual

* same Figure 2.21. Comparison of graphical and analytical methods of removing regional
ly to gravity.

deeper
1c grid
about where ¢ is a constant, s is a scale factor, and negative according to his concept of the density

Zw o= -1 Usually the values on the various circles  contrast expected to cause the anomaly. However, in
differ- are read at grid points as in Figure 2.20b. Equation nongraphical methods, the average value of the
signed (2.43) is simply the expression for a 2-D convolution, residual is usually set at zero so that both positive

and residualizing can be thought of as a convolution and negative residuals result. This is illustrated in

or filtering operation. Figure 2.21. A consequence of this is that each .
. } In graphical methods the interpreter usually draws  anomaly is surrounded by a “halo” of opposite sign,
(2.43) the regional so that all residuals are either positive or  which does not indicate a separate anomaly. !

L S S S
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2.6.5. Second Vertical Derivative Methods

The second vertical derivative enhances near-surface
effects at the expense of deeper anomalies. Second
derivatives are a measure of curvature, and large
curvatures are associated with shallow anomalies.

The second vertical derivative can be obtained
from the horizontal derivatives because the gravity
field satisfies Laplace’s equation

Vig = 3%/dx* + d%g/ay* + 3%g/322 =0

3%/92% = — (3% /3x* + d%/dy?) (2.44)

For the one-dimensional case, the first derivative can
be estimated by dividing the difference between read-
ings at two nearby locations, x; and x,, separated
by the distance Ax:

dg(x,5)/dx = {8(*‘2) - g(xl)}/Ax

The second derivative is obtained from the difference
between nearby first derivatives:

dg(x,)/dx? = { dg(x,5) /dx — dg(x,5)/dx} /dx
= [{ 8(x3) - 8(x)} /Bx
~{g(x2) ~ g(x)}/Bx]/5x
= {8(x;) - 28(x,)

+g(x)) /(Ax)* (2.45)

Equation (2.45) has the same form as Equation (2.43)
(a weighted sum of the values at nearby points), and
Equation (2.43) yields an estimate of the second
vertical derivative for appropriate values of w;.

A number of mathematical treatments have been
developed (Henderson and Zietz, 1949; Elkins, 1951;
Dean, 1958) to extract the vertical second derivative
from the average values at various distances from the
station. Generally values over concentric circles are
weighted to produce an expression of the form [com-
pare with Eq. (2.43)]

82g/¢9z2 = (c/.s'z)(wog0 + wlg_1 + wzg_z + .- )

(2.46a)

Gravity methods

where g, is the gravity at the station where the
second derivative is being determined, g,.g,.... are
averages over surrounding circles of various radii,
Wp, Wy, ... are weighting coefficients such that Zw, =
0, ¢ is a numerical factor, and s is the grid spacing.
For example, if the survey is on a square grid and
the successive radii are s, 5,2, and s/5 (as in Fig.
2.20b), one form of equation (2.46a) is

d%/02% = 2(3g, ~ 4g, + g,) /5% (2.46b)

(Henderson and Zietz, 1949). Gupta and Ramani
(1982) show an application to mineral exploration.

2.6.6. Wavelength Filtering

The foregoing methods of separating residuals from
the regional are based on the degree of smoothness
(or wavelength = 1 /wavenumber; see §4.2.2d) of
anomalies. Filtering can also be done by transform-
ing map data to a wavenumber-wavenumber do-
main using a two-dimensional Fourier transform
[Egs. (A.57)], removing certain wavenumber compo-
nents (that is, filtering), and then doing an inverse
transformation to reconstitute the map, but with
certain wavelengths removed. What are removed are
usually the small wavenumbers (large wavelengths)
of the regional, so that the wavenumber components
involved in the inverse transform are the large ones
which correspond to the short wavelengths of the
residual.

Wavenumber filtering encounters the same prob-
lem as other residualizing schemes. The wavenumber
spectra of most features are broadband, so spectra of
features at different depths overlap and consequently
the features cannot be separated completely by fil-
tering.

2.6.7. Field Continuation

The fact that gravity fields obey Laplace’s equation
permits us to determine the field over an arbitrary
surface if the field is known completely over another
surface and no masses are located between the two
surfaces. This process is called continuation.
Following the method of Grant and West (1965,
pp. 216-21), we let the plane z = O separate free
space (z < 0) ‘from the region containing masses
(z > 0) (Fig. 2.22a); P is a point in free space, O
locates a point mass, and 1 is the distance PQ. If Up
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Plxg. yo. = )

(b)

figure 2.22. The continuation theorem. (After Grant and
West, 1965.) (a) Hemisphere S on positive side of xy
plane. (b) Hemisphere on negative side of xy plane.

and U, are the potentials at P and Q. Equations
(2.6a) and (2.13b) give

Up =7 [ (o/R) dv
14
VzUQ = —4nyp
Eliminating p, we have
Up = = (1/47) [ (1/R)v2Uj, dv
v

We now apply Green's theorem [Eq. (A.28)] to
the hemisphere in Figure 2.22a with W = 1 /R, U =
Up inside S. and U= U; on the surface. Since
V(1/R) = 0, we get

—fV(I/R) V2, dv = 4nlp = j;{ Us v(1/Rg)
—(1/Rs) vUs}) - ds
= fS{US a/an(1/Rs)

~(1/Rg) 8Us,/8n) ds
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The derivatives within the braces are the components
of the gradients normal to the surface ds. Setting the
radius of the hemisphere equal to infinity causes the
contribution of the curved surface to vanish because
of the factor 1/Rg, and the integral reduces to

4alp = f‘/';{ Us(3/9n)(1/Rs)
~(1/Rg) dUs/dn} dxdy (2.47a)

The integration is taken over that portion of the xy
plane where the anomalous field is significantly larger
than zero.

We now follow the same procedure using the
hemisphere in Figure 2.22b. Because W2Uj, =0
within the hemisphere [Eq. (2.11a)], we get

o [f(staronciny
—(1/Rg) dUs/3n} dxdy (2.47b)

The right-hand sides of Equations (2.47a) and (2.47b)
appear to be the same, but, in fact, they are different
because n, the outward unit normal to the surface
ds, is upward (—z direction) in Equation (2.47a)
and downward (+z direction) in Equation (2.47b).
Thus, dU;/dn = —g in Equation (2.47a) and +g
in Equation (247b). Also, R% = (x — xp)® +
(¥ = 3o)* + (z + k)2, 50, on the xy plane,

(3/0n)(1/Rs)

lim (8/82)(1/Rs)

linz){ -(z+h)/R}}

—h/R§

which is independent of the direction of n. Thus,
subtracting Equation (2.47b) from (2.47a), we obtain

Up = (1/27) f fy (8/Rs) dxdy

where Rf = (x — x0)2 + (y — y)? + h2. To get
dUp/3z at P, we replace h? in R with 22, differ-
entiate, and then replace z with (—4) (note that g
on the xp plane is not a function of z). The result is

Up/3z = gp = (1/2w)hfxfy( g/R%) dxdy

(2.48)
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Since (h/Rg) = cos @ in Figure 2.22b, (g/27) can
be regarded as a surface density of mass replacing
the mass below the xy plane [compare with Eq.
(2.14)). Equation (2.48) is the upward continuation
equation that allows us to calculate the gravitational
acceleration anywhere in free space from a knowl-
edge of its values over the surface. Upward continua-
tion is effectively smoothing. Although upward con-
tinuation is not done much in gravity analysis, it is
used in magnetic interpretation to comparc measure-
ments made at different flight elevations.

If we can calculate the gravity field over a surface
closer to the anomaly sources, the anomaly should
be sharper and less confused by the effects of deeper
features. This process, called downward continuation,
was described by Peters (1949). It involves calculat-
ing a gravity value at depth from gravity values and
derivatives on a shallower surface. The derivatives
are usually evaluated by averaging over circles of
different radii as described in Section 2.6.5. The
main theoretical limitation on the method is singu-
larities associated with masses through which the
continuation process is carried. The main practical
limitation is imposed by uncertainty in the measured
field; because derivatives involve differences, their
calculation magnifies uncertainties. The result is that
minor noise is increased in the downward-continued
field and this noise may outweigh the benefits of
sharpening anomalies.

We begin with Laplace’s equation (2.11b) (thus
implicitly assuming that we will not continue through
any masses) and the expressions for second deriva-
tives calculated by finite differences [Eq. (2.45)]. For
the point (xg, y;,0) and station spacing s, we write

3%g/ax* = { g(xo + 5. 3.0) — 28(x0. %.0)
+g(xg = 5. 39.0)} /?

328/9)’2 = {g(xo. Yo 5,0) — 2g( xo. ,"0‘0)
+8(XO~J’0_5~O)}/52

3%g/92% = { g(x0. yo. +5) — 28(%0. 15.0)

+g(xg. Yo = $)} /5

If we take z to be positive downward, then
g(Xo- Jo» +5) is the gravity value a distance s below
the station g(xg. ¥o.0). Substituting into Laplace’s

Gravity methods

equation, we get

8(xo: o> +5) = 68( xp, y5.0)
—{ g(x0 + 5, %.0)

+g(xo — 5, %,0)
+g(xg, yp +5.0)
+g(xg. ¥o — 5.0)

+g(x0. Jo, — )} (2.49)

All of these terms can be found from the gravity
values read from a grid except for the last term,
which can be found from Equation (2.48). Similar
but more complicated procedures use concentric Cir-
cles passing through grid stations. Othcr methods
employ Fourier transform theory (see Grant and
West, 1965, p. 218).

2.7. GRAVITY INTERPRETATION

2.7.1. General

After the camouflaging interference effects of other
featurcs have been removed to the best of our abil-
ity, the interpretation problem usuvally is finding
the mass distribution responsible for the residual
anomaly. This often is done by iterative modeling
(Bhattacharyya, 1978). The field of a model mass
distribution is calculated and subtracted from the
residual anomaly to determine the effects for which
the model cannot account. Then the model is changed
and the calculations repeated until the remaining
effects become smaller than some value considered
to be “close enough.” To limit the number of possi-
ble changes, we include some predetermined con-
straints, for example, we might change only the
upper surface of the mass distribution.

Before iterative modeling became practical, inter-
preters generally compared residual anomalies to
anomalies associated with simple shapes, and this
procedure is still useful in many situations. Simple
shapes can be modeled with a microcomputer (Reeves
and MacLeod, 1983). A gravity anomaly is not espe-
cially sensitive to minor variations in the shape of
the anomalous mass, so that simple shapes often
yield results that are close enough to be useful. Study
of the gravity effect of simple shapes also helps in
understanding the types of information that can be
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learned, for example, in determining what aspects of
an anomaly indicate the depth, shape, density con-
trast, total mass, and so forth.

In the following examples, the density symbol p
is the density contrast with respect to the laterally
equivalent material (in numerical relations, p is the
difference in specific gravity because density is usu-
ally given in grams per cubic centimeters even where
linear dimensions are given in English units).

2.7.2. Gravity Effect of a Sphere
The gravity cffect of a sphere at a point P (Fig.

223), directed along r, is g, = yM/r? The vertical
component is

g=g, cosb = yMz/r3

= kpa’z/(x* + 12)3/2 mGal  (2.50)

Figure 2.23. Gravity effect of a sphere.

where
k=4xy/3
=279 X 10”3 when a, x, z are in meters
=852x10"% when a, x, z are in feet

Note that z is the depth to the sphere center rather

than to the top of the sphere and that the profile is

symmetrical about the origin taken directly above

the center. The maximum value of g is

Emax = 27.9 X 107%43/2% when a. z in meters
(2.51a)
= 8.52 X 107%4a?/z? when a, z in fect

(2.51b)

The depth of the center of the sphere, z, can be
found from a profile. When g = g, /2, z = 1.3x 5.



T 36

(a)
P x Q 1-0
T
eVEX . 08
P .
> 8
\(\é ® 06
E
© 2 04

02

Gravity methods

-——==---4o

- —— [, ——>]

th

Xy /2/2

|
|
|
|
|
1

e ¥

—15-10-05 00 05 10 15

é‘/ radius a

(4]

Figure 2.24. Gravity effect of a horizontal rod. (a) Three-dimensional view. (b) Projec-
tion on the plane containing the rod and the y axis. (c) Projection on the xz plane. (d)

Gravity profile along the x axis (L = o).

where x, ,, is the half-width of the profile, that is,
half the width at the half-maximum value. We can
also express the mass of the sphere, M, in terms of

X1 /2 and guay!

M = 2558 ( x1/2)2 tonnes  (2.52a)

where x; /, is in meters, or, where x{  is in feet,
M= 2.61gm,‘()c1’/2)2 short tons  (2.52b)

The spherical shape is particularly useful as a first
approximation in the interpretation of three-dimen-
sional anomalies that are approximately symmetri-
cal.

2.7.3. Gravity Effect of a Horizontal Rod

The effect at P(x. y.0) of a segment of length d/ of
a horizontal rod perpendicular to the x axis at a
depth z (Fig. 2.24) with mass m per unit length is

dg, = ymdi/r* = ym(n de/cos? ¢) /rt = ymde/r

where dl = (r, d¢/cos? ¢). The component along

18
dg, = dg,cos ¢ = ymcosde/n
and the vertical component is

dg = dg, cos § = dg,(z/r) = ymz cos ¢ do/r{

Integrating from tan~!'{(y — L)/n} to tan~!

{(y + L)/}, we get

('ymz) y+ L

E= "2

" {(y+1L)+ r,z}]/2
y—L

((y-1?+r2)"

ym 1

T2 | (14 (24 )My + 1Y)

1

B {1+ (2+2)/(y- L)?

¥ = | (253)

This is
The d
(2.54):;

If the 1
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Surface

figure 2.25. Gravity effect of a vertical cylinder. {a) Calculation of gravity over the axis.

(b) Geometry of a cylindrical slice.

If the rod is infinite in Iength, the limits of integra-
tion would have been +7/2 and the result would be

g =2ym/z(1 + x2/2?) (2.54)

This is usually a good approximation when L > 10z.
The depth z to the center of the rod in Equation
(2.54) can be found from the half-width x, ,,:

2=, (2.55)

If the rod is expanded into a cylinder of radius a, the
only change in Equations (2.53) and (2.54) is that
m = qma’.

27.4. Gravity Effect of a Vertical Cylinder

The gravity effect on the axis of a vertical cylinder
(which is the maximum value) can easily be calcu-
lated. First we find g on the axis for a disk of
thickness d¢ (Fig. 2.25a). We start with an elemen-

. tary ring of width dr whose mass is 8m = 2mprdrdft,

i

so that its gravity effect is
8g = ydmcos¢/(r? + £2)
= (27pyd¢)rdrcos o /(r? + £2)
=2uypd{sing do
on eliminating r. Integrating first from ¢ = 0 to

tan"!(R/¢) for the disk and then from £=z to
z + L, we get, for the whole cylinder,

g= 2wypfz+L{l ~ (% + Rz)l/z} d¢
k4
= 2ﬂyp[L + (22 + RZ)V2

~{(z+1L)+ Rz}mJ (2.56)
where

27y =419 X 107® when z, R, L are in meters = -

=12.77 X 10~ when z, R, L are in feet i

R
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Figure 2.26. Gravity effect off the axis of a vertical cylinder.

There are several cases of special significance:

_If R = co. we have an infinite horizontal slab and

g=2mypL (2.57)
This is the Bouguer correction given in Section
2.3.2d. Note that g is independent of the depth of
the slab and varies only with its thickness.

. The terrain cofrection can be obtained using a

sector of the cylinder as shown in Figure 2.25b.
We have 8m = p(r8) drd¢ so that

8g = y(prédrd¢)cos¢/(r? + ¢*)
= yp8 d{ sin¢ d¢

on eliminating r. We integrate from ¢ =
tan~1(r;/¢) to tan"'(r,/¢) and from £=0to L.

The result is
sgr=100{(rn—n) + (i + 12
—(+ 12"} (258)

which is Equation (2.26)*with L replacing Az
3. When z = 0, the cylinder outcrops and we get

)1/2

g=2mp{L+R-(L+ R} (2.59)

4. If L — oo, we have
g= 27ryp{(22 + RZ)V2 - z} (2.60)
If. in addition, z = 0, we have
g = 2mypR (2.61)

When L > z, we can use Equation (2.60) to get the
gravity off-axis (see MacRobert, 1948:151-5 or
Pipes and Harvill, 1970:348-9). Because g satisfies
Laplace’s equation, we can express it in a series of
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Figure 2.27. Gravity effect of a thin sheet of infinite strike length.

Legendre polynomials P,(u) where p = cos 8 (Pipes
and Harvill, 1970:799-805). Taking r > z in Figure
226, we have three cases to consider: r > z > R,
R>r>z and r > R > 2 For the first case, we get
(see problem 3)

g(r.8) = 2mypR{(R/2r) - (R/2r)’Py(p)
+2(R/2r)°P(p) ~ -} (262)
For the second case, R > r > z, the result is
g(r.0) = 2myoR{1 - 2(r/2R) P,(p)
+2(r/2R)* (1)
—2(r/2R)*Py(p) + -+ } (263)

The result for the third case, r > R > z, is the same
as Equation (2.62), showing that Equation (2.62) is
valid whenever r > R. From Equations (2.62) and
(2.63) we get the curve in Figure 2.26.

2.7.5. Gravity Effect of a Thin Dipping Sheet

Considerable simplification can be effected when a
body can be considered two-dimensional. In general,

this holds when the strike length is about 20 times
the other dimensions (including depth).

Referring to Figure 2.27, we have the following
rclations:

p={(x—-hcota)sina = xsina — hcos a,
r=psect

z=rsin(a+0~n/2) = p(sinatand — cos a)
dz = psinasec? § df

no=(x*+ 1),
12
= {(x+ ¢tcosa)® + (h + t’sina)z} /

Now we apply Equation (2.9) for a two-dimensional
structure. The product dx dz in Equation (2.9) repre-
sents an element of area of the cross section, that is,

dxdz = td{=tcsc adz = 1p sec? 0 df

Equation (2.9) now gives (note that r' is the same as
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Figusre 2.28. Gravity effect of a semiinfinite horizontal sheet.
r here) horizontal sheet,

g= Zyptpfoz (z/r*)sec* 648
g

)
= 27ptf :(sinatan() — cos &) df
-9

= 2ypt{sinaln(cos 8, /cos 6,) — (6, + 6)cos a}

= 2ypt{sinaln(r/r,) — (6 + 6,)cos a}
(2.64)

If the sheet is vertical, Equation (2.64) simpli-
fies to

g =2yt o[ {(h+£)? + x*}[(x* + )] (269

The thin sheet is a good approximation to a prism
unless the thickness of the prism is somewhat greater
than h, the depth to the top. When the dip is steep
(> 60°), the depth can be roughly estimated from
the half-width, for example, when h=¢, h=
0.7x, 5, However, when ¢ is large or when the dip is
small it is not possible to get a reliable estimate.

2.7.6. Gravity Effect of Horizontal Sheets,
Slabs, Dikes, and Faults

(a) Horizontal thin sheet. When the sheet in Equa-
tion (2.64) is horizontal, & = 7 and we have

g = 2yot(6, + 6)

= 2ypt[tan~1{ (¢~ x)/h} + tan” (x/h)]
(2.66)

If. in addition, £— oo, we have, for a semiinfinite

g=2ypt{m/2+ 1an" (x/h)} (2.67)

and if the sheet extends to infinity in the other
direction (that is, x goes to infinity as well) we have
the Bouguer correction as in Equation (2.57) with ¢
replacing L.

The profile for a semiinfinite horizontal sheet is
shown in Figure 2.28. The thin sheet result can be
used to approximate a horizontal slab with an error
less than 2% when h > 2¢. A fault often can be
approximated by two semiinfinite horizontal sheets,
one displaced above the other as in Figure 2.29.

(b) Horizontal slab. Equation (2.67) can be used to
find the gravity effect of a semiinfinite horizontal
slab terminating at a plane dipping at the angle «
(Fig. 2.30). We use Equation (2.67) to get the effect
of the thin sheet of thickness dz and then integrate
to find the result for the slab (Geldart, Gill, and
Sharma, 1966).

We must replace x in Equation (2.67) with (x +
ztan B), so tan"!(x/h) becomes tan”'{(x +
z tan B)/z} = 0. Equation (2.67) now gives

g= 27pfzz(7r/2 +0)dz = 2-Yp(7rt/2 + f”edz)
B 5 g=2
We now have:

Using

tanf = (x + ztan B) /z = (x/z) + tan B integra

z = x/(tan@ — tan B)
dz = —x sec? oao/(tana — tan B)?
—xcost B do/sin* (8 — B)
—x cos? B dy/sin?
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where ¢ =0 - g. Substituting for dz, we get Thus,

g= ZYp[m/Z — xcos? B{ —¢ cot ¢ + In(sin )

dz) §
g= 2~,p{m/2 - xcoszﬁf:z(q, + B) dy/sin ,,o}

:
E

~Beoty)|%]
= 230 mi/2 + x s B((4 + B)eot ¥
~Insin ) }|%]
=2yp[m1/2 + xcos? B{ (4, + B)cot ¥,

(¢, + B)cot ¥
—ycoty + In(sin ) —In(sin ¢, /sin ) } |

Using the relation | dx/sit x = —cot x, we can
Integrate the first term by parts, that is,

qu,/smz\p ~1pcot44+fcot¢d¢

R
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Figure 2.30. Gravity effect of a semiinfinite slab. t = 300 m, a = 90° except where
otherwise noted on the curves, p = 1 gm/cm’.

Figure 2.30 shows that so
B(cot, — cotyy) = B(AC/CP - BC/CP) (sin Y /sin ) = n/n
= B(AB/CP) Also,
— B(1/cos B) /(xcos ) |
— Br/( xcos? B) coty, = {(z,/cosB) + xsinB}/xcos B
- ; 2 3
s that we finally get = (z; + xsin Bcos B) /x cos* B Fll‘
g=2yo{(m/2+B)1+ xcos? B(F, — F)) (S:bs_tilzu;in‘;gleh;blig;ation (2.68) and noting that £ = ‘ ::f;
(268) ‘2740 v '
A (c) Tt
where g=ZYP{(ﬂ/2+B)t+(02-—B) dike i
. - two sl
F, =y, cot §, — In(sin ¢;) V=0, -8 X(z; + xsin feos ) : sp:czz
0,-=tan’l{(x/z,)+tan/3} —(6, — B)(z + xsinBcosB)
+xcos? BIn(n/n))

Equation (2.68) is sometimes given in another
form. From Figure 2.30 we have = 2YP{ (m1/2) + (2,0, - z6,)

x/siny, = n/sin(m/2 + B) = n/cosB - +x(8, — 6,)sin Beos B
x/sin y, = r,/cos B ' +xcos? Bn(r/n)} (2.69)
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Figure 2.30 shows curves for a semiinfinite slab.
The slope is quite sensitive to the depth of the slab
but not to the dip of the end.

(c) Thick two-dimensional dike. The result for the
dike in Figure 2.31 can be obtained by subtracting
two slabs, one being displaced horizontally with re-
spect to the other. The result is

8= 2wcos? B{x(F; ~ F) - (x - b)(E, - F))
(2.72)

using Equation (2.68). In terms of Equation (2.69),

When the sides of the dike arc vertical, 8 = 0 and

g= ZYP{ 2,(6, - b,) - 7(6, - 05)
+xIn(rn/rn) + bln(r4/r3)} (2.74)

If the dike outcrops. z) = 0, r, = x, ry=(x-0b),

6, = m/2 = 6;, and the result is

g =2v0[2,(6, — 8,) + sin Bcos B
X{x(0, ~ 6,) = b(n/2 - 4,))
+xcos’ Bin{ n(x ~ b) /r,x)}

+beos?’BIn{r/(x—b)}]  (2.75)

e d
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Figure 2.31. Gravity effect of a dike. Profiles are perpendicular to the dike. L = oo,
b=12=1/3 2z,= 4/3. 8 = 45° (solid line), 0° (dashed line).
. If the end of the slab is vertical, B =0 and this is
Equation (2.69) gives
8= ZYP[22(02 = 0) — z(6, - 6;)
g =2v0o{(7t/2) + (2,8, - z6,) +sin Bcos B{ x(6, - 6,)
—(x = b)(6, - 6,)}
+xIn(n/r)} (2.70) !
+cos? B{ x In(r/r,)
—-(x - b)l
If the slab outcrops, 2, =0, z, =1, 6, = n/2, (x = b)in(ra/n)}]
n = x and = 2v0[2,(6, - 6,) —z(6, - 63)
+sin Beos B{ x(6, + 6, - 6, — 6,)
§=2yp{(7t/2) + 6,1 + x(8, — 7/2)sin B cos B +b(6, - 6,)}
2
+xcos’ BIn(r/x)} (2.71) *eos® f{xIn(rn/n)
+b1In(ry/r)}] (2.73)

i

4;’.
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a faulted horizontal bed; t= 1,200 m, z = 150 m,

Figure 2.32. Gravity effect of

7, = 1,350m, z; = 600 m, z, = 1,800 m, a = 60°, and p = 1g/cn?. (From Geldart, Gill,

and Sharma, 1966.)

If the dike is also vertical, this reduces further to

g =2y[2,(8, - 6,) + xIn{ n(x - b)/nx}

+bin{n/(x - 5)}] (276)

An estimate of z,, the depth to the top of the
dike, is not very satisfactory in terms of x; ,,. When
z; = b, we find that z, = 0.67x, , when 2z, =2b,
and z; = 0.33x, , when 2, = 10b, that is, a factor
of 2 depending on the depth cxtent. In general, the
curves become sharper as both z; and z, get smaller.
Also, it is impossible to make a good estimate of the
width of the dike from the shape of the curve.

(d) Fault. The gravity effect of the fault shown in
Figure 2.32 can be obtained by adding the effects of:

(i) A near-surface semiinfinite slab.
(ii) A deeper infinite slab of the same thickness.
(iii) A semiinfinite slab of negative density contrast
to wipe out the part of the infinite slab under
the near-surface slab.

The result is

g =2vp[nt + xcos? B{(K - R) - (R - B)}]
(2.77)

A typical curve is shown in Figure 2.32 (note that the

constant term 2mypt has been omitted). Obviously
onc can extend Equation (2.77) to include a series of
horizontal beds at increasing depths.

2.7.7. Applying Simple Models to Actual
Anomalies

Most of the formulas for simple shapes are far from
easy to apply. Even when we can assume that a field
result can be matched by a specific geometry, it is
still tedious to plot profiles from expressions that
contain a number of geometrical unknowns in addi-
tion to the density contrast. Use of a collection of
characteristic curves reduces the labor involved.

We first establish some significant features associ-
ated with the profiles. Usually the number of param-
cters is reduced by measuring in terms of one of
them, preferably the one that influcnces the signifi-
cant features the least. Grant and West (1965, pp.
273-80) discussed how to construct curves for the
thin dipping sheet model. They concluded that sym-
metry and sharpncss are the most diagnostic fea-
tures, and thus they developed curves in terms of
ratios that depend principally on these properties.

2.7.8. Gravity Effects of Complex Shapes

The gravity effects of complex shapes are usually
calculated by subdividing the body into rectangular
cells, calculating the effect of each with a digital
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Section of two-
dimensional structure

/

S

Figure 2.33. Template for calculating the gravity effect of two-dimensional bodies of
irregular cross section. (From Hubbert, 1948).

Figure 2.34. Polygon approximation of an irregular vertical section of a two-dimen-

sional body.

computer, and then summing. This procedure is
sometimes carried out graphically using templates
superimposed on a cross section to divide it into
elementary areas, each of which contributes the same
effect at a surface station.

A template of this type is shown in Figure 2.33.
The gravity effect at the chart apex is

g~ K X 10~ Ngz mGal (2.78)

. where N is the number of segments covering the
Cross section, ¢ is the angular separation of radial
lines, 2 is the separation of horizontal lines, K = 23
for z in meters and 7.1 for z in feet.

L

When the structure is not really iwo dimensional,
the finite length can be taken into account by apply-
ing a correction. For a point in the plane of the cross
section of a finite structure at a distance r from the

section’s center of gravity, the correction is

1 1

2 izt 2 172

(1+r2/72) (1+r2/72)
(2.79)

where g is the actual gravity of the finite body, g,, is
the gravity for a body of the same cross section and
of infinite length, and Y,.Y, are the distances from
the cross section to the ends of the body.

Graphical methods have also been employed on
three-dimensional bodies by placing templates over

g 1
&n 2
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contours of the body in a horizontal plane. In effect,
the body is broken up into a stack of horizontal slabs
whose thickness is determined by the contour inter-
val. This approach is more difficult than the two-
dimensional procedure because the chart must have
a variable scale parameter to allow for different slab
depths.

One can calculate the gravity effect of a 2-D body
of arbitrary cross section by using an n-sided poly-
gon to approximate the outline of the vertical section
(Talwani, Worzel, and Landisman, 1959). A simple
section is illustrated in Figure 2.34. The gravity effect
of this section is equal to a linc integral around the
perimeter (Hubbert, 1948). The relation is

g= 27p¢z d0

From the geometry of Figure 234 we have the
following relations:

z=xtand = (x — a,)tan ¢,
or
z=(a;tanftan¢,)/(tan¢; — tan f)

The line integral for the side BC is

a,tanf tan ¢;
/ zd0=fc—'————¢—'d0=2i
BC B ta.nq),-—tan0

Thus,

n
g=2wLZ (2.80)

i=1

In the most general case, Z; is given by

Z, = a; sin §, cos ¢; l( 6, = 0:41)

cos §,(tan§, — tan ¢;)
cosf,,,(tan6;,, — tane;)
(2.81)

+ tan ¢; ~1n{

where

o % qf Em T E
6, = tan ‘(-L). ¢; = tan 1(——-——'
X Xig1 ~ X

a; = X;11 = Zi41 COLS;

Xy — X;
i+1 i
=‘xi+l+zi+1( _‘“'_)

Zi T Zjpy

Gravity methods

This technique has also been used for three-
dimensional bodies by replacing the contours in the
horizontal plane with n-sided polygons. The solu-
tion, from line integrals of the polygons, is essen-
tially a more complicated version of Equation (2.81).

2.7.9. The Direct and Inverse Problems
of Interpretation

The interpretation techniques outlined in previous
sections employ models with simplified shapes. Cal-
culating the effects of models is the direct or forward
approach to interpretation (the same procedure is
used in other geophysical methods). The initial selec-
tion of a reasonable model is made with the aid of
geological information and the experience of the
interpreter. Interpretation in terms of simple models,
a morc-or-less force-fit to the data. is commonly
used when data and control are incomplete. Detailed
analysis is complicated by the fact that model fits are
not unique. Ambiguity is well illustrated in the clas-
sic paper of Skeels (1947), who shows a gravity
profile that could be produced by a number of mass
distributions.

The inverse problem involves determining the ge-
ometry and physical properties of the source from
measurements of the anomaly, rather than simply
selecting a model and determining the parameters
that match the anomaly approximately. The inherent
nonuniqueness may make such a task appear to be a
waste of time: however, with additional constraints
and a computer, this type of analysis becomes in-
creasingly useful.

We outline here a typical least-squares procedure
for the inverse method. First, assume some mathe-
matical model based on prior knowledge of the
geology and/or of the geometry plus additional in-
formation gleaned from the general appearance of
profiles and contours. Next, limit the number of
parameters allowed to vary, for example, some sub-
set of strike, length, attitude, depth, and depth ex-
tent; this makes the inverse problem more tractable.
Next, lincarize the problem (because the mathemati-
cal model is often essentially nonlinear) to simplify
computations. Matrices (§A.2) are generally used.
The solution is obtained by using the model and a
given set of parameters to calculate simulated data
(called the model response), comparing the model
response with the values given by the observed data.
and then varying the parameters to fit the data more
closely. We illustrate this procedure as follows:

1. The model gives a relation between m parameters
p;. For cach set of values of p;, we get a model
response f(py. Py+ Pys-- s Pmh which has a value
fi(Pys P2s P3r- - s P) A each of the » data points.
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Three-dimensional

Hemisphere surface

anomalous mass

Figure 2.35. Calculation of excess mass.

We write

i=1,2,....n
(2.82)

€; =f.‘(P1sP2vP3v--"Pm) =&

where ¢, are the observed data that f; are in-
tended to match and ¢; are the errors between the
observed data and the model response. We begin
with an estimate of p;.

2. Because f(py, P3s P3.---s Pm) generally involves
nonlinear relations between the parameters,
we simplify calculations by using a first-order
Taylor-series expansion to get equations that are
linear with respect to the derivatives. Differenti-
ating Equation (2.82), we get

X.(81/3p,) 8p, =8¢,  (2.83a)
where each derivative is evaluated using the cur-

rent set of p, values. In matrix notation Equation
(2.83a) becomes

2P =& (2.83b)

where @ is an (n X m) matrix whose elements
are df,/dp;, & is an (m X 1) column matrix of
the sought-for parameter changes dp;. and &'is an
(n X 1) column matrix whose elements are 8e;.

- In the usual overdetermined case, n > m and @

is not square; we use Equation (A.5b) to solve
Equation (2.83b):

P =(979) '97¢ (2.84)

This solution is equivalent to » equations in the

m increments 8p;. Since n > m, we apply the
method of least squares (Sheriff and Geldart, 1983,
§10.1.5) to obtain the values of 8p;. The p; are
then replaced by p; + 8p; and the calculations are
repeated. Iteration is stopped when Le? is smaller
than some acceptable (prespecified) value.

Many modifications of the preceding procedure
exist, notably methods that stabilize the procedure.
If 2 is too large to be efficiently handled by the
computer, procedures such as steepest descent or
conjugate gradient methods, may be employed.
Marquardt (1963) employs an -adjustable damping
factor, whereas Jackson (1979) and Tarantola and
Valette (1982) introduce a priori information to con-
strain the problem (sec §3.8.2, example 3, for a
similar magnetic procedure). If the model is highly
nonlinear, these methods may not work well and
Monte Carlo methods may be appropriate.

2.7.10. Excess Mass

Although there is no unique solution to a set of
potential ficld data, it is possible to determine
uniquely the total anomalous mass, regardless of its
geometrical distribution. Sometimes this is a useful
calculation (although potentially dangerous) in esti-
mating ore tonnage in mineral exploration.

To find the excess mass, we start with Equation
(2.12). Dropping the minus sign, we have

fs g, ds = dmyM

We surround the mass by a hemisphere whose upper
face is the datum plane z = 0. The surfacc integral i
can be separated into two parts: the integral over the i

S o
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circular base in the xy plane and the surface of the
half-sphere. From Figure 2.35, we have

ff g, dxdy

z=0

+ [[ g,R? sin 6 db d = dmyM
H

fsg,.d9=

where g, in the integral over the datum plane z = 0
is the residual anomaly g(x, y) and R is the radius
of the hemisphere. We take R large enough that M
is in effect a point mass at the origin and g, =
yM /R? at the hemispherical surface. Integration over
this surface as ¢ goes from 0 to 2« and § from 7,/2
to = leads to the value 27 yM, so that

fw f°° g(x, _V) dxdy = 2'”'YM

— 00" —00

M=) [" 7 g(xp) dxdy (289

In practice, the integral is evaluated by numerical
integration using the relation

M=K)Y g(x.y)AxAy (2.86)

where m is in metric tons or short tons according as
K =263 for Ax,Ay in meters, or K =244 for
Ax,Ay in feet. The actual mass producing the
anomaly can be determined if we know its density p,
and density contrast Ap. This multiplies Equation
(2.86) by the factor (p,/Bp):

actual mass = (p,/Ap) X excess mass (2.87)

If the regional has not been properly removed, or if
other residual anomalies are included, the estimate
obviously will be in error.

2.7.11. Overburden Effects

In many field situations, the effects of variations in
the depth of the overburden may be larger than the
effects of different rocks at depth, and so variations
in overburden thickness can produce significant
gravity anomalies. The average density for an assort-
ment of overburden materials is about 1.92 g/cm?®
when wet and 1.55 g/cn’ when dry, and the aver-
ages for wet and dry sedimentary rocks are ~ 2.50
and ~ 2.20 g/cnt, respectively. Thus a contrast of
0.6 g/cn?’ is possible.

Gravity methods

As a rough estimate, we expect the overburden to
be thicker in valleys and low-lying flat land than on
steep hillsides and clevated plateaus. Abrupt changes
in overburden thickness, however, are common
enough. In any gravity survey, and particularly in
mineral exploration, it is worthwhile to consider the
extent to which gravity anomalies may be caused by
variations in overburden thickness.

From the Bouguer correction given in Equation
(2.23) and the effect of a semiinfinite horizontal slab,
we can get some idea of the magnitude of the over-
burden effect. The maximum gravity variation that
results from a sudden change Ah in overburden
thickness, where the density contrast is Ap, is given
by

Ag.. =419 %1072 8pAh
=128 X 1073 Ap AR’

(2.88a)
(2.88b)

where Ak is in meters, Ak’ is in feet, and Ag,,, isin
milligals.

The maximum horizontal gradient of gravity will,
of course, be large if overburden irregularity is the
source. For abrupt depth changes of 10 m or more in
a horizontal distance of 10 m and Ap = 0.6 g/car’, .
the value of (dg,,,,/dx) will be about 0.03 mGal/m.
In fact, this steep gradient is more diagnostic than
the magnitude of g,,,,. Clearly the depth of overbur-
den should be measured in areas of shallow gravity
anomalies. This is best done by small-scale refraction
or surface resistivity measurements.

2.7.12. Maximum-Depth Rules

Smith (1959) gives several formulas for maximum
depths of gravity distributions whose shapes are not
known, provided that the anomalous bodies have a
density contrast with the host rock that is either
entirely positive or entirely negative. If |g.,,] and
B8/ 8x) max| are the maximum values of gravity and
of the horizontal derivative, respectively, the depth §
to the upper surface has a limiting value given by [

2 2 0.86|gmuxl/|( 98/ )umae] (289§
If the anomaly is two dimensional, the factor 0.86
becomes 0.65 in Equation (2.89). However, this ex- g
pression is not particularly accurate.

2.8. FIELD EXAMPLES

(1) Figure 2.36a shows a Bouguer gravity contous
map compiled from a survey in the vicinity off§
Portland Creek Pond in northern Newfoundland
This was an exploration program for oil and gas i
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Figure 2.36. (Continued) (b} Density log in borehole DDH PCi-70. (c) Comparison
with calculated profile for a 2-D dipping prism.

an area of sedimentary rocks whose thickness, a few
miles south, is known to be over 5000 ft. The
topography is reasonably flat and no terrain correc-
tions were required.

It is evident that the large positive anomaly is not
a reflection of deep bascment structure because the

gradients are too steep. If we use Equation (2.68) to ¥
approximate a slab for profile A4’ in Figure 2.36a,

the values of g, and (9g/9x)y., indicate that i §
is not greater than 650800 ft. This indicates that the §

source is shallow and hence must be within the
sediments. One possibility is an intrusive dike of
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Figure 2.37. Gravity profiles over a

great linear extent, but Equation (2.74) shows that
the flanks of the anomaly in this case would be much
less steep than the field profile; this suggests that the
source is of limited depth.

A 1,600 ft drill hole was put down in the center of

this gravity anomaly; its location is shown in Figure
2.36a. Density measurements on core samples at 100
ft intervals are shown in Figure 2.36b. The local
presence of dolomite from near surface to 1,000 ft
and interbedded with dark shales from 1,000 to
1,600 ft accounts for the positive gravity. The aver-
age density of the dolomite samples was 2.82 g /cn?’.
If the surrounding sedimentary formations are as-
sumed to have a density of about 2.55 g/cnr, it is
possible to match the field profile reasonably well
with the dipping prism shown in Figure 2.36¢. This
analysis is oversimplified since the actual structure is
neither two dimensional (L = 9b) nor homogeneous
in the bottom 500 ft. Both factors would steepen the
b flanks on the profile.
8 (2) The profiles in Figure 2.37 illustrate the pro-
B nounced effect of overburden thickness on gravity
§ results. This is the Louvicourt Township copper de-
B Posit near Val d’Or, Quebec. Discovery was made by
drilling a weak Turam anomaly (§7.4.3b); the gravity
j survey was carried out immediately after.

The original Bouguer gravity profile indicated a
weak anomaly of 0